May  2014, 13(3): 991-1015. doi: 10.3934/cpaa.2014.13.991

Consequences of the choice of a particular basis of $L^2(S^3)$ for the cubic wave equation on the sphere and the Euclidean space

1. 

University of Cergy-Pontoise, UMR CNRS 8088, F-95000 Cergy-Pontoise, France

Received  December 2012 Revised  July 2013 Published  December 2013

In this paper, the almost sure global well-posedness of the cubic non linear wave equation on the sphere is studied when the initial datum is a random variable with values in low regularity spaces. The result is first proved on the 3D sphere, thanks to the existence of a uniformly bounded in $L^p$ basis of $L^2(S^3)$ and then it is extended to $R^3$ thanks to the Penrose transform.
Citation: Anne-Sophie de Suzzoni. Consequences of the choice of a particular basis of $L^2(S^3)$ for the cubic wave equation on the sphere and the Euclidean space. Communications on Pure & Applied Analysis, 2014, 13 (3) : 991-1015. doi: 10.3934/cpaa.2014.13.991
References:
[1]

N. Burq and G. Lebeau, Injections de Sobolev Probabilistes et Applications,, preprint., ().   Google Scholar

[2]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation,, preprint., ().   Google Scholar

[3]

Nicolas Burq and Nikolay Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory,, \emph{Invent. Math.}, 173 (2008), 449.  doi: 10.1007/s00222-008-0124-z.  Google Scholar

[4]

D. Christodoulou, Global solutions of non linear hyperbolic equations for small initial data,, \emph{Comm. Pure. Appl. Math.}, 39 (1986), 267.  doi: 10.1002/cpa.3160390205.  Google Scholar

[5]

A-S. de Suzzoni, Large data low regularity scattering results for the wave equation on the Euclidian space,, \emph{Comm. PDE}, 38 (2013), 1.  doi: 10.1080/03605302.2012.736910.  Google Scholar

[6]

X. Fernique, R\'egularit\'e des trajectoires des fonctions al\'eatoires gaussiennes,, \emph{Ecole d’\'et\'e St. Flour.} {IV}-1974, 480 (1975), 1.   Google Scholar

[7]

Michel Ledoux, The Concentration of Measure Phenomenon,, Mathematical Surveys and Monographs, (2001).   Google Scholar

[8]

N. Tzvetkov, Remark on the Null-condition for the nonlinear wave equation,, \emph{Bollettino U.M.I.}, 8 (2000), 135.   Google Scholar

show all references

References:
[1]

N. Burq and G. Lebeau, Injections de Sobolev Probabilistes et Applications,, preprint., ().   Google Scholar

[2]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation,, preprint., ().   Google Scholar

[3]

Nicolas Burq and Nikolay Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory,, \emph{Invent. Math.}, 173 (2008), 449.  doi: 10.1007/s00222-008-0124-z.  Google Scholar

[4]

D. Christodoulou, Global solutions of non linear hyperbolic equations for small initial data,, \emph{Comm. Pure. Appl. Math.}, 39 (1986), 267.  doi: 10.1002/cpa.3160390205.  Google Scholar

[5]

A-S. de Suzzoni, Large data low regularity scattering results for the wave equation on the Euclidian space,, \emph{Comm. PDE}, 38 (2013), 1.  doi: 10.1080/03605302.2012.736910.  Google Scholar

[6]

X. Fernique, R\'egularit\'e des trajectoires des fonctions al\'eatoires gaussiennes,, \emph{Ecole d’\'et\'e St. Flour.} {IV}-1974, 480 (1975), 1.   Google Scholar

[7]

Michel Ledoux, The Concentration of Measure Phenomenon,, Mathematical Surveys and Monographs, (2001).   Google Scholar

[8]

N. Tzvetkov, Remark on the Null-condition for the nonlinear wave equation,, \emph{Bollettino U.M.I.}, 8 (2000), 135.   Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[3]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[5]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[8]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[9]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[10]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[11]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[12]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[13]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[15]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[19]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[20]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]