May  2014, 13(3): 991-1015. doi: 10.3934/cpaa.2014.13.991

Consequences of the choice of a particular basis of $L^2(S^3)$ for the cubic wave equation on the sphere and the Euclidean space

1. 

University of Cergy-Pontoise, UMR CNRS 8088, F-95000 Cergy-Pontoise, France

Received  December 2012 Revised  July 2013 Published  December 2013

In this paper, the almost sure global well-posedness of the cubic non linear wave equation on the sphere is studied when the initial datum is a random variable with values in low regularity spaces. The result is first proved on the 3D sphere, thanks to the existence of a uniformly bounded in $L^p$ basis of $L^2(S^3)$ and then it is extended to $R^3$ thanks to the Penrose transform.
Citation: Anne-Sophie de Suzzoni. Consequences of the choice of a particular basis of $L^2(S^3)$ for the cubic wave equation on the sphere and the Euclidean space. Communications on Pure & Applied Analysis, 2014, 13 (3) : 991-1015. doi: 10.3934/cpaa.2014.13.991
References:
[1]

N. Burq and G. Lebeau, Injections de Sobolev Probabilistes et Applications,, preprint., ().   Google Scholar

[2]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation,, preprint., ().   Google Scholar

[3]

Nicolas Burq and Nikolay Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., 173 (2008), 449-475. doi: 10.1007/s00222-008-0124-z.  Google Scholar

[4]

D. Christodoulou, Global solutions of non linear hyperbolic equations for small initial data, Comm. Pure. Appl. Math., 39 (1986), 267-282. doi: 10.1002/cpa.3160390205.  Google Scholar

[5]

A-S. de Suzzoni, Large data low regularity scattering results for the wave equation on the Euclidian space, Comm. PDE, 38 (2013), 1-49. doi: 10.1080/03605302.2012.736910.  Google Scholar

[6]

X. Fernique, R\'egularit\'e des trajectoires des fonctions al\'eatoires gaussiennes, Ecole d’\'et\'e St. Flour. {IV}-1974, Lecture Notes in Math., 480 (1975), 1-96. Google Scholar

[7]

Michel Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, vol. 89, American Mathematical Society, Providence, RI, 2001. Google Scholar

[8]

N. Tzvetkov, Remark on the Null-condition for the nonlinear wave equation, Bollettino U.M.I., 8 (2000), 135-145. Google Scholar

show all references

References:
[1]

N. Burq and G. Lebeau, Injections de Sobolev Probabilistes et Applications,, preprint., ().   Google Scholar

[2]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation,, preprint., ().   Google Scholar

[3]

Nicolas Burq and Nikolay Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., 173 (2008), 449-475. doi: 10.1007/s00222-008-0124-z.  Google Scholar

[4]

D. Christodoulou, Global solutions of non linear hyperbolic equations for small initial data, Comm. Pure. Appl. Math., 39 (1986), 267-282. doi: 10.1002/cpa.3160390205.  Google Scholar

[5]

A-S. de Suzzoni, Large data low regularity scattering results for the wave equation on the Euclidian space, Comm. PDE, 38 (2013), 1-49. doi: 10.1080/03605302.2012.736910.  Google Scholar

[6]

X. Fernique, R\'egularit\'e des trajectoires des fonctions al\'eatoires gaussiennes, Ecole d’\'et\'e St. Flour. {IV}-1974, Lecture Notes in Math., 480 (1975), 1-96. Google Scholar

[7]

Michel Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, vol. 89, American Mathematical Society, Providence, RI, 2001. Google Scholar

[8]

N. Tzvetkov, Remark on the Null-condition for the nonlinear wave equation, Bollettino U.M.I., 8 (2000), 135-145. Google Scholar

[1]

Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133

[2]

Nguyen Huy Tuan, Tran Ngoc Thach, Yong Zhou. On a backward problem for two-dimensional time fractional wave equation with discrete random data. Evolution Equations & Control Theory, 2020, 9 (2) : 561-579. doi: 10.3934/eect.2020024

[3]

Carey Caginalp. A survey of results on conservation laws with deterministic and random initial data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2043-2069. doi: 10.3934/dcdsb.2018225

[4]

Hubert L. Bray, Marcus A. Khuri. A Jang equation approach to the Penrose inequality. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 741-766. doi: 10.3934/dcds.2010.27.741

[5]

Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125.

[6]

Julia Calatayud, Juan Carlos Cortés, Marc Jornet. On the random wave equation within the mean square context. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021082

[7]

Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic & Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029

[8]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[9]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[10]

Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173

[11]

Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617

[12]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[13]

Luz de Teresa, Enrique Zuazua. Identification of the class of initial data for the insensitizing control of the heat equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 457-471. doi: 10.3934/cpaa.2009.8.457

[14]

Michael Röckner, Rongchan Zhu, Xiangchan Zhu. A remark on global solutions to random 3D vorticity equations for small initial data. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4021-4030. doi: 10.3934/dcdsb.2019048

[15]

Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems & Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685

[16]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[17]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[18]

Soichiro Katayama. Global existence for systems of nonlinear wave and klein-gordon equations with compactly supported initial data. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1479-1497. doi: 10.3934/cpaa.2018071

[19]

Kyouhei Wakasa. Blow-up of solutions to semilinear wave equations with non-zero initial data. Conference Publications, 2015, 2015 (special) : 1105-1114. doi: 10.3934/proc.2015.1105

[20]

Muhammad Arfan, Kamal Shah, Aman Ullah, Soheil Salahshour, Ali Ahmadian, Massimiliano Ferrara. A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021011

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]