Citation: |
[1] |
A. Banerjee and N. Garofalo, Gradient bounds and monotonicity of the energy for some nonlinear singular diffusion equations, Indiana Univ. Math. J., 62 (2013), 699-736.doi: 10.1512/iumj.2013.62.4969. |
[2] |
Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Diff. Geom., 33 (1991), 749-786. |
[3] |
M. Crandall, M. Kocan and A. Swiech, $L^p$-theory for fully nonlinear uniformly parabolic equations, Comm. Partial Differential Equations, 25 (2000), 1997-2053.doi: 10.1080/03605300008821576. |
[4] |
K. Does, An evolution equation involving the normalized $p$-Laplacian, Comm. Pure Appl. Anal., 10 (2011), 361-396.doi: 10.3934/cpaa.2011.10.361. |
[5] |
L. Evans and R. Gariepy, Wiener's criterion for the heat equation, Arch. Rational Mech. Anal., 78 (1982), 293-314.doi: 10.1007/BF00249583. |
[6] |
L. C. Evans and J. Spruck, Motions of level sets by mean curvature, Part I, J. Diff. Geom., 33 (1991), 635-681. |
[7] |
E. Fabes, N. Garofalo and E. Lanconelli, Wiener's criterion for divergence form parabolic operators with $C^1$-Dini continuous coefficients, Duke Math. J., 59 (1989), 191-232.doi: 10.1215/S0012-7094-89-05906-1. |
[8] |
A. Friedman, Parabolic equations of the second order, Trans. Amer. Math. Soc., 93 (1959), 509-530. |
[9] |
R. Gariepy and W. P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Rat. Mech. Anal., 67 (1977), 25-39. |
[10] |
S. Granlund, P. Lindqvist and O. Martio, Note on the PWB-method in the nonlinear case, Pacific J. Math., 125 (1986), 381-395. |
[11] |
M. Gruber, Harnack inequalities for solutions of general second order parabolic equations and estimates of their Hölder constants, Math. Z., 185 (1984), 23-43.doi: 10.1007/BF01214972. |
[12] |
J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. |
[13] |
C. Imbert and L. Silvestre, Introduction to fully nonlinear parabolic equations, in An Introduction to the Kähler-Ricci Flow, Lecture Notes in Mathematics, 2086 (2013), 7-88.doi: 10.1007/978-3-319-00819-6_2. |
[14] |
P. Juutinen, Decay estimates in sup norm for the solutions to a nonlinear evolution equation, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 144 (2014), 557-566.doi: 10.1017/S0308210512001163. |
[15] |
P. Juutinen and B. Kawohl, On the evolution governed by the infinity Laplacian, Math. Ann., 335 (2006), 819-851.doi: 10.1007/s00208-006-0766-3. |
[16] |
P. Juutinen, P. Lindqvist and J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasilinear equation, SIAM J. Math. Anal., 33 (2001), 699-717.doi: 10.1137/S0036141000372179. |
[17] |
T. Kilpelainen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation, SIAM J. Math. Anal., 27 (1996), 661-683.doi: 10.1137/0527036. |
[18] |
T. Kilpelainen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.doi: 10.1007/BF02392793. |
[19] |
N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 161-175 (Russian). |
[20] |
O. Ladyzhenskaja and N. Uraltseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis Academic Press, New York-London, 1968. |
[21] |
O. Ladyzhenskaja, V. A. Solonnikov and N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1967. |
[22] |
G. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.doi: 10.1142/3302. |
[23] |
G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.doi: 10.1016/0362-546X(88)90053-3. |
[24] |
J. Maly and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 51 (1997), xiv+291 pp. ISBN: 0-8218-0335-2.doi: 10.1090/surv/051. |
[25] |
J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math Anal., 42 (2010), 2058-2081.doi: 10.1137/100782073. |
[26] |
V. G. Mazya, The continuity at a boundary point of the solutions of quasi-linear elliptic equations, Vestnik Leningrad. Univ., 25 (1970), 42-55. |
[27] |
K. Miller, Barriers on cones for uniformly elliptic operators, Ann. Mat. Pura Appl., 76 (1967), 93-105. |
[28] |
M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applications, Comm. Partial Differential Equations, 22 (1997), 381-441.doi: 10.1080/03605309708821268. |
[29] |
O. Perron, Die Stabilittsfrage bei Differentialgleichungen, Math. Z., 32 (1930), 703-728.doi: 10.1007/BF01194662. |
[30] |
J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math., 111 (1964), 247-302. |
[31] |
I. Skrypnik, On the Wiener criterion for quasilinear degenerate parabolic equations, Dokl. Akad. Nauk, 398 (2004), 458-461. |
[32] |
W. Sternberg, Über die Gleichung der Wärmeleitung, Math. Ann., 101 (1929), 394-398.doi: 10.1007/BF01454850. |
[33] |
P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.doi: 10.1016/0022-0396(84)90105-0. |
[34] |
G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal., 59 (1984), 572-611.doi: 10.1016/0022-1236(84)90066-1. |
[35] |
L. Wang, On the regularity theory of fully nonlinear parabolic equations: I, Comm. Pure Appl. Math., 45 (1992), 27-76.doi: 10.1002/cpa.3160450103. |