January  2015, 14(1): 1-21. doi: 10.3934/cpaa.2015.14.1

On the Dirichlet boundary value problem for the normalized $p$-laplacian evolution

1. 

Department of Mathematics, Purdue University, West Lafayette, IN 47907, United States

2. 

Dipartimento di Ingegneria Civile, Edile e Ambientale (DICEA), Università di Padova, 35131 Padova, Italy

Received  April 2014 Revised  June 2014 Published  September 2014

In this paper, we study the potential theoretic aspects of the normalized $p$-Laplacian evolution, see (1.1) below. A systematic study of such equation was recently started in [1], [4] and [25]. Via the classical Perron approach, we address the question of solvability of the Cauchy-Dirichlet problem with "very weak" assumptions on the boundary of the domain. The regular boundary points for the Dirichlet problem are characterized in terms of barriers. For $p \geq 2 $, in the case of space - time cylinder $G \times (0,T)$, we show that $(x,t) \in \partial G \times (0, T]$ is a regular boundary point if and only if $x \in \partial G$ is a a regular boundary point for the p-Laplacian. This latter operator is the steady state corresponding to the evolution (1.1) below. Consequently, when $p\geq 2$ the Cauchy- Dirichlet problem for (1.1) can be solved in cylinders whose section is regular for the $p$-Laplacian. This can be thought of as an analogue of the results obtained in [17] for the standard parabolic $p$-Laplacian div$(|Du|^{p-2}Du) - u_t = 0 $.
Citation: Agnid Banerjee, Nicola Garofalo. On the Dirichlet boundary value problem for the normalized $p$-laplacian evolution. Communications on Pure & Applied Analysis, 2015, 14 (1) : 1-21. doi: 10.3934/cpaa.2015.14.1
References:
[1]

A. Banerjee and N. Garofalo, Gradient bounds and monotonicity of the energy for some nonlinear singular diffusion equations,, \emph{Indiana Univ. Math. J.}, 62 (2013), 699.  doi: 10.1512/iumj.2013.62.4969.  Google Scholar

[2]

Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations,, \emph{J. Diff. Geom.}, 33 (1991), 749.   Google Scholar

[3]

M. Crandall, M. Kocan and A. Swiech, $L^p$-theory for fully nonlinear uniformly parabolic equations,, \emph{Comm. Partial Differential Equations}, 25 (2000), 1997.  doi: 10.1080/03605300008821576.  Google Scholar

[4]

K. Does, An evolution equation involving the normalized $p$-Laplacian,, \emph{Comm. Pure Appl. Anal.}, 10 (2011), 361.  doi: 10.3934/cpaa.2011.10.361.  Google Scholar

[5]

L. Evans and R. Gariepy, Wiener's criterion for the heat equation,, \emph{Arch. Rational Mech. Anal.}, 78 (1982), 293.  doi: 10.1007/BF00249583.  Google Scholar

[6]

L. C. Evans and J. Spruck, Motions of level sets by mean curvature, Part I,, \emph{J. Diff. Geom.}, 33 (1991), 635.   Google Scholar

[7]

E. Fabes, N. Garofalo and E. Lanconelli, Wiener's criterion for divergence form parabolic operators with $C^1$-Dini continuous coefficients,, \emph{Duke Math. J.}, 59 (1989), 191.  doi: 10.1215/S0012-7094-89-05906-1.  Google Scholar

[8]

A. Friedman, Parabolic equations of the second order,, \emph{Trans. Amer. Math. Soc.}, 93 (1959), 509.   Google Scholar

[9]

R. Gariepy and W. P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations,, \emph{Arch. Rat. Mech. Anal.}, 67 (1977), 25.   Google Scholar

[10]

S. Granlund, P. Lindqvist and O. Martio, Note on the PWB-method in the nonlinear case,, \emph{Pacific J. Math.}, 125 (1986), 381.   Google Scholar

[11]

M. Gruber, Harnack inequalities for solutions of general second order parabolic equations and estimates of their Hölder constants,, \emph{Math. Z.}, 185 (1984), 23.  doi: 10.1007/BF01214972.  Google Scholar

[12]

J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Oxford Science Publications, (1993).   Google Scholar

[13]

C. Imbert and L. Silvestre, Introduction to fully nonlinear parabolic equations,, in \emph{An Introduction to the K\, 2086 (2013), 7.  doi: 10.1007/978-3-319-00819-6_2.  Google Scholar

[14]

P. Juutinen, Decay estimates in sup norm for the solutions to a nonlinear evolution equation,, \emph{Proceedings of the Royal Society of Edinburgh: Section A Mathematics}, 144 (2014), 557.  doi: 10.1017/S0308210512001163.  Google Scholar

[15]

P. Juutinen and B. Kawohl, On the evolution governed by the infinity Laplacian,, \emph{Math. Ann.}, 335 (2006), 819.  doi: 10.1007/s00208-006-0766-3.  Google Scholar

[16]

P. Juutinen, P. Lindqvist and J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasilinear equation,, \emph{SIAM J. Math. Anal.}, 33 (2001), 699.  doi: 10.1137/S0036141000372179.  Google Scholar

[17]

T. Kilpelainen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation,, \emph{SIAM J. Math. Anal.}, 27 (1996), 661.  doi: 10.1137/0527036.  Google Scholar

[18]

T. Kilpelainen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, \emph{Acta Math.}, 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[19]

N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients,, \emph{Izv. Akad. Nauk SSSR Ser. Mat.}, 44 (1980), 161.   Google Scholar

[20]

O. Ladyzhenskaja and N. Uraltseva, Linear and Quasilinear Elliptic Equations,, Translated from the Russian by Scripta Technica, (1968).   Google Scholar

[21]

O. Ladyzhenskaja, V. A. Solonnikov and N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type,, Translations of Mathematical Monographs, (1967).   Google Scholar

[22]

G. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996).  doi: 10.1142/3302.  Google Scholar

[23]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, \emph{Nonlinear Anal.}, 12 (1988), 1203.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[24]

J. Maly and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations,, Mathematical Surveys and Monographs, 51 (1997), 0.  doi: 10.1090/surv/051.  Google Scholar

[25]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, \emph{SIAM J. Math Anal.}, 42 (2010), 2058.  doi: 10.1137/100782073.  Google Scholar

[26]

V. G. Mazya, The continuity at a boundary point of the solutions of quasi-linear elliptic equations,, \emph{Vestnik Leningrad. Univ.}, 25 (1970), 42.   Google Scholar

[27]

K. Miller, Barriers on cones for uniformly elliptic operators,, \emph{Ann. Mat. Pura Appl.}, 76 (1967), 93.   Google Scholar

[28]

M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applications,, \emph{Comm. Partial Differential Equations}, 22 (1997), 381.  doi: 10.1080/03605309708821268.  Google Scholar

[29]

O. Perron, Die Stabilittsfrage bei Differentialgleichungen,, \emph{Math. Z.}, 32 (1930), 703.  doi: 10.1007/BF01194662.  Google Scholar

[30]

J. Serrin, Local behavior of solutions of quasi-linear equations,, \emph{Acta Math.}, 111 (1964), 247.   Google Scholar

[31]

I. Skrypnik, On the Wiener criterion for quasilinear degenerate parabolic equations,, \emph{Dokl. Akad. Nauk}, 398 (2004), 458.   Google Scholar

[32]

W. Sternberg, Über die Gleichung der Wärmeleitung,, \emph{Math. Ann.}, 101 (1929), 394.  doi: 10.1007/BF01454850.  Google Scholar

[33]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, \emph{J. Differential Equations}, 51 (1984), 126.  doi: 10.1016/0022-0396(84)90105-0.  Google Scholar

[34]

G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains,, \emph{J. Funct. Anal., 59 (1984), 572.  doi: 10.1016/0022-1236(84)90066-1.  Google Scholar

[35]

L. Wang, On the regularity theory of fully nonlinear parabolic equations: I,, \emph{Comm. Pure Appl. Math.}, 45 (1992), 27.  doi: 10.1002/cpa.3160450103.  Google Scholar

show all references

References:
[1]

A. Banerjee and N. Garofalo, Gradient bounds and monotonicity of the energy for some nonlinear singular diffusion equations,, \emph{Indiana Univ. Math. J.}, 62 (2013), 699.  doi: 10.1512/iumj.2013.62.4969.  Google Scholar

[2]

Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations,, \emph{J. Diff. Geom.}, 33 (1991), 749.   Google Scholar

[3]

M. Crandall, M. Kocan and A. Swiech, $L^p$-theory for fully nonlinear uniformly parabolic equations,, \emph{Comm. Partial Differential Equations}, 25 (2000), 1997.  doi: 10.1080/03605300008821576.  Google Scholar

[4]

K. Does, An evolution equation involving the normalized $p$-Laplacian,, \emph{Comm. Pure Appl. Anal.}, 10 (2011), 361.  doi: 10.3934/cpaa.2011.10.361.  Google Scholar

[5]

L. Evans and R. Gariepy, Wiener's criterion for the heat equation,, \emph{Arch. Rational Mech. Anal.}, 78 (1982), 293.  doi: 10.1007/BF00249583.  Google Scholar

[6]

L. C. Evans and J. Spruck, Motions of level sets by mean curvature, Part I,, \emph{J. Diff. Geom.}, 33 (1991), 635.   Google Scholar

[7]

E. Fabes, N. Garofalo and E. Lanconelli, Wiener's criterion for divergence form parabolic operators with $C^1$-Dini continuous coefficients,, \emph{Duke Math. J.}, 59 (1989), 191.  doi: 10.1215/S0012-7094-89-05906-1.  Google Scholar

[8]

A. Friedman, Parabolic equations of the second order,, \emph{Trans. Amer. Math. Soc.}, 93 (1959), 509.   Google Scholar

[9]

R. Gariepy and W. P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations,, \emph{Arch. Rat. Mech. Anal.}, 67 (1977), 25.   Google Scholar

[10]

S. Granlund, P. Lindqvist and O. Martio, Note on the PWB-method in the nonlinear case,, \emph{Pacific J. Math.}, 125 (1986), 381.   Google Scholar

[11]

M. Gruber, Harnack inequalities for solutions of general second order parabolic equations and estimates of their Hölder constants,, \emph{Math. Z.}, 185 (1984), 23.  doi: 10.1007/BF01214972.  Google Scholar

[12]

J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Oxford Science Publications, (1993).   Google Scholar

[13]

C. Imbert and L. Silvestre, Introduction to fully nonlinear parabolic equations,, in \emph{An Introduction to the K\, 2086 (2013), 7.  doi: 10.1007/978-3-319-00819-6_2.  Google Scholar

[14]

P. Juutinen, Decay estimates in sup norm for the solutions to a nonlinear evolution equation,, \emph{Proceedings of the Royal Society of Edinburgh: Section A Mathematics}, 144 (2014), 557.  doi: 10.1017/S0308210512001163.  Google Scholar

[15]

P. Juutinen and B. Kawohl, On the evolution governed by the infinity Laplacian,, \emph{Math. Ann.}, 335 (2006), 819.  doi: 10.1007/s00208-006-0766-3.  Google Scholar

[16]

P. Juutinen, P. Lindqvist and J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasilinear equation,, \emph{SIAM J. Math. Anal.}, 33 (2001), 699.  doi: 10.1137/S0036141000372179.  Google Scholar

[17]

T. Kilpelainen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation,, \emph{SIAM J. Math. Anal.}, 27 (1996), 661.  doi: 10.1137/0527036.  Google Scholar

[18]

T. Kilpelainen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, \emph{Acta Math.}, 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[19]

N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients,, \emph{Izv. Akad. Nauk SSSR Ser. Mat.}, 44 (1980), 161.   Google Scholar

[20]

O. Ladyzhenskaja and N. Uraltseva, Linear and Quasilinear Elliptic Equations,, Translated from the Russian by Scripta Technica, (1968).   Google Scholar

[21]

O. Ladyzhenskaja, V. A. Solonnikov and N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type,, Translations of Mathematical Monographs, (1967).   Google Scholar

[22]

G. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996).  doi: 10.1142/3302.  Google Scholar

[23]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, \emph{Nonlinear Anal.}, 12 (1988), 1203.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[24]

J. Maly and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations,, Mathematical Surveys and Monographs, 51 (1997), 0.  doi: 10.1090/surv/051.  Google Scholar

[25]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, \emph{SIAM J. Math Anal.}, 42 (2010), 2058.  doi: 10.1137/100782073.  Google Scholar

[26]

V. G. Mazya, The continuity at a boundary point of the solutions of quasi-linear elliptic equations,, \emph{Vestnik Leningrad. Univ.}, 25 (1970), 42.   Google Scholar

[27]

K. Miller, Barriers on cones for uniformly elliptic operators,, \emph{Ann. Mat. Pura Appl.}, 76 (1967), 93.   Google Scholar

[28]

M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applications,, \emph{Comm. Partial Differential Equations}, 22 (1997), 381.  doi: 10.1080/03605309708821268.  Google Scholar

[29]

O. Perron, Die Stabilittsfrage bei Differentialgleichungen,, \emph{Math. Z.}, 32 (1930), 703.  doi: 10.1007/BF01194662.  Google Scholar

[30]

J. Serrin, Local behavior of solutions of quasi-linear equations,, \emph{Acta Math.}, 111 (1964), 247.   Google Scholar

[31]

I. Skrypnik, On the Wiener criterion for quasilinear degenerate parabolic equations,, \emph{Dokl. Akad. Nauk}, 398 (2004), 458.   Google Scholar

[32]

W. Sternberg, Über die Gleichung der Wärmeleitung,, \emph{Math. Ann.}, 101 (1929), 394.  doi: 10.1007/BF01454850.  Google Scholar

[33]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, \emph{J. Differential Equations}, 51 (1984), 126.  doi: 10.1016/0022-0396(84)90105-0.  Google Scholar

[34]

G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains,, \emph{J. Funct. Anal., 59 (1984), 572.  doi: 10.1016/0022-1236(84)90066-1.  Google Scholar

[35]

L. Wang, On the regularity theory of fully nonlinear parabolic equations: I,, \emph{Comm. Pure Appl. Math.}, 45 (1992), 27.  doi: 10.1002/cpa.3160450103.  Google Scholar

[1]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[2]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[3]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[4]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[5]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[6]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[7]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[8]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[9]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[10]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[11]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[12]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[13]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[14]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[15]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[16]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[17]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[18]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[19]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[20]

Kai Li, Tao Zhou, Bohai Liu. Pricing new and remanufactured products based on customer purchasing behavior. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021043

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (197)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]