\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Dirichlet boundary value problem for the normalized $p$-laplacian evolution

Abstract / Introduction Related Papers Cited by
  • In this paper, we study the potential theoretic aspects of the normalized $p$-Laplacian evolution, see (1.1) below. A systematic study of such equation was recently started in [1], [4] and [25]. Via the classical Perron approach, we address the question of solvability of the Cauchy-Dirichlet problem with "very weak" assumptions on the boundary of the domain. The regular boundary points for the Dirichlet problem are characterized in terms of barriers. For $p \geq 2 $, in the case of space - time cylinder $G \times (0,T)$, we show that $(x,t) \in \partial G \times (0, T]$ is a regular boundary point if and only if $x \in \partial G$ is a a regular boundary point for the p-Laplacian. This latter operator is the steady state corresponding to the evolution (1.1) below. Consequently, when $p\geq 2$ the Cauchy- Dirichlet problem for (1.1) can be solved in cylinders whose section is regular for the $p$-Laplacian. This can be thought of as an analogue of the results obtained in [17] for the standard parabolic $p$-Laplacian div$(|Du|^{p-2}Du) - u_t = 0 $.
    Mathematics Subject Classification: Primary: 35J25; Secondary: 35J70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Banerjee and N. Garofalo, Gradient bounds and monotonicity of the energy for some nonlinear singular diffusion equations, Indiana Univ. Math. J., 62 (2013), 699-736.doi: 10.1512/iumj.2013.62.4969.

    [2]

    Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Diff. Geom., 33 (1991), 749-786.

    [3]

    M. Crandall, M. Kocan and A. Swiech, $L^p$-theory for fully nonlinear uniformly parabolic equations, Comm. Partial Differential Equations, 25 (2000), 1997-2053.doi: 10.1080/03605300008821576.

    [4]

    K. Does, An evolution equation involving the normalized $p$-Laplacian, Comm. Pure Appl. Anal., 10 (2011), 361-396.doi: 10.3934/cpaa.2011.10.361.

    [5]

    L. Evans and R. Gariepy, Wiener's criterion for the heat equation, Arch. Rational Mech. Anal., 78 (1982), 293-314.doi: 10.1007/BF00249583.

    [6]

    L. C. Evans and J. Spruck, Motions of level sets by mean curvature, Part I, J. Diff. Geom., 33 (1991), 635-681.

    [7]

    E. Fabes, N. Garofalo and E. Lanconelli, Wiener's criterion for divergence form parabolic operators with $C^1$-Dini continuous coefficients, Duke Math. J., 59 (1989), 191-232.doi: 10.1215/S0012-7094-89-05906-1.

    [8]

    A. Friedman, Parabolic equations of the second order, Trans. Amer. Math. Soc., 93 (1959), 509-530.

    [9]

    R. Gariepy and W. P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Rat. Mech. Anal., 67 (1977), 25-39.

    [10]

    S. Granlund, P. Lindqvist and O. Martio, Note on the PWB-method in the nonlinear case, Pacific J. Math., 125 (1986), 381-395.

    [11]

    M. Gruber, Harnack inequalities for solutions of general second order parabolic equations and estimates of their Hölder constants, Math. Z., 185 (1984), 23-43.doi: 10.1007/BF01214972.

    [12]

    J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993.

    [13]

    C. Imbert and L. Silvestre, Introduction to fully nonlinear parabolic equations, in An Introduction to the Kähler-Ricci Flow, Lecture Notes in Mathematics, 2086 (2013), 7-88.doi: 10.1007/978-3-319-00819-6_2.

    [14]

    P. Juutinen, Decay estimates in sup norm for the solutions to a nonlinear evolution equation, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 144 (2014), 557-566.doi: 10.1017/S0308210512001163.

    [15]

    P. Juutinen and B. Kawohl, On the evolution governed by the infinity Laplacian, Math. Ann., 335 (2006), 819-851.doi: 10.1007/s00208-006-0766-3.

    [16]

    P. Juutinen, P. Lindqvist and J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasilinear equation, SIAM J. Math. Anal., 33 (2001), 699-717.doi: 10.1137/S0036141000372179.

    [17]

    T. Kilpelainen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation, SIAM J. Math. Anal., 27 (1996), 661-683.doi: 10.1137/0527036.

    [18]

    T. Kilpelainen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.doi: 10.1007/BF02392793.

    [19]

    N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 161-175 (Russian).

    [20]

    O. Ladyzhenskaja and N. Uraltseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis Academic Press, New York-London, 1968.

    [21]

    O. Ladyzhenskaja, V. A. Solonnikov and N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1967.

    [22]

    G. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.doi: 10.1142/3302.

    [23]

    G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.doi: 10.1016/0362-546X(88)90053-3.

    [24]

    J. Maly and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 51 (1997), xiv+291 pp. ISBN: 0-8218-0335-2.doi: 10.1090/surv/051.

    [25]

    J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math Anal., 42 (2010), 2058-2081.doi: 10.1137/100782073.

    [26]

    V. G. Mazya, The continuity at a boundary point of the solutions of quasi-linear elliptic equations, Vestnik Leningrad. Univ., 25 (1970), 42-55.

    [27]

    K. Miller, Barriers on cones for uniformly elliptic operators, Ann. Mat. Pura Appl., 76 (1967), 93-105.

    [28]

    M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applications, Comm. Partial Differential Equations, 22 (1997), 381-441.doi: 10.1080/03605309708821268.

    [29]

    O. Perron, Die Stabilittsfrage bei Differentialgleichungen, Math. Z., 32 (1930), 703-728.doi: 10.1007/BF01194662.

    [30]

    J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math., 111 (1964), 247-302.

    [31]

    I. Skrypnik, On the Wiener criterion for quasilinear degenerate parabolic equations, Dokl. Akad. Nauk, 398 (2004), 458-461.

    [32]

    W. Sternberg, Über die Gleichung der Wärmeleitung, Math. Ann., 101 (1929), 394-398.doi: 10.1007/BF01454850.

    [33]

    P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.doi: 10.1016/0022-0396(84)90105-0.

    [34]

    G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal., 59 (1984), 572-611.doi: 10.1016/0022-1236(84)90066-1.

    [35]

    L. Wang, On the regularity theory of fully nonlinear parabolic equations: I, Comm. Pure Appl. Math., 45 (1992), 27-76.doi: 10.1002/cpa.3160450103.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(724) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return