-
Previous Article
Klein-Gordon-Maxwell equations in high dimensions
- CPAA Home
- This Issue
-
Next Article
Asymptotic behavior for the unique positive solution to a singular elliptic problem
Essential perturbations of polynomial vector fields with a period annulus
1. | Department of Applied Mathematics, Babeş-Bolyai University, 1 Kogălniceanu str., Cluj-Napoca, 400084 |
2. | Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69, 25001 Lleida |
References:
[1] |
Amer. Math. Soc. Transl., 100 (1954), 1-19. |
[2] |
J. Math. Anal. Appl., 331 (2007), 443-454.
doi: 10.1016/j.jmaa.2006.09.008. |
[3] |
Math. Proc. Camb. Phil. Soc., 140 (2006), 47-70.
doi: 10.1017/S0305004105008807. |
[4] |
J. Math. Anal. Appl., 366 (2010), 297-309.
doi: 10.1016/j.jmaa.2010.01.010. |
[5] |
J. Differential Equations, 91 (1991), 268-326.
doi: 10.1016/0022-0396(91)90142-V. |
[6] |
in Trends in Mathematics: Differential equations with symbolic computation, Birkhäuser (2005), 23-35.
doi: 10.1007/3-7643-7429-2_2. |
[7] |
J. Differential Equations, 110 (1994), 86-133.
doi: 10.1006/jdeq.1994.1061. |
[8] |
in Actualités Mathématiques, Hermann, Paris, 1992. |
[9] |
Qual. Theory Dyn. Syst., 9 (2010), 101-113.
doi: 10.1007/s12346-010-0022-9. |
[10] |
Rocky Mountain J. Math., 31 (2001), 1277-1303.
doi: 10.1216/rmjm/1021249441. |
[11] |
Comput. Appl. Math., 20 (2001), 149-177. |
[12] |
Ergodic Theory Dynam. Systems, 28 (2008), 1497-1507.
doi: 10.1017/S0143385707000971. |
[13] |
Duke Math. J., 152 (2010), 1-26.
doi: 10.1215/00127094-2010-005. |
[14] |
Bull. Sci. Math., 130 (2006), 152-161.
doi: 10.1016/j.bulsci.2005.09.001. |
[15] |
Bull. Am. Math. Soc., 8 (1902), 437-479.
doi: 10.1090/S0002-9904-1902-00923-3. |
[16] |
Bull. Sci. Math., 122 (1998), 107-161.
doi: 10.1016/S0007-4497(98)80080-8. |
[17] |
in Translations of Mathematical Monographs, 94. American Mathematical Society, Providence, RI, 1991. |
[18] |
in Graduate Studies in Mathematics 86, American Mathematical Society, Providence, Rhode Island, 2008. |
[19] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47-106.
doi: 10.1142/S0218127403006352. |
[20] |
J. Dyn. Control Syst., 17 (2011), 291-310.
doi: 10.1007/s10883-011-9120-5. |
[21] |
Journal de Mathématiques, 37 (1881), 375-422; 8 (1882), 251-296; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp 3-84. Google Scholar |
[22] |
in Sur les espaces fibrés et les variétés feuilletées by W.-T. Wu, G. Reeb, Actualités Sci. Industr., 1183, Tome XI, Paris, Hermann et Cie, Éditeurs, Paris, 1952. |
[23] |
Birkhäuser Boston, Inc., Boston, MA, 2009.
doi: 10.1007/978-0-8176-4727-8. |
[24] |
Progress in Mathematics 164 Birkhäuser Verlag, Basel, 1998.
doi: 10.1007/978-3-0348-8798-4. |
[25] |
Qual. Theory Dyn. Syst., 2 (2001), 67-78.
doi: 10.1007/BF02969382. |
[26] |
in Bifurcations and Periodic Orbits of Vector Fields (Montreal, PQ, 1992), 429-467, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 408, Kluwer Acad. Publ., Dordrecht, 1993. |
[27] |
(Russian) Differencial'nye Uravnenija, 1 (1965) 53-66. English translation: Differential Equations 1 (1965), 36-47. |
[28] |
Math. Intelligencer, 20 (1998), 7-15.
doi: 10.1007/BF03025291. |
show all references
References:
[1] |
Amer. Math. Soc. Transl., 100 (1954), 1-19. |
[2] |
J. Math. Anal. Appl., 331 (2007), 443-454.
doi: 10.1016/j.jmaa.2006.09.008. |
[3] |
Math. Proc. Camb. Phil. Soc., 140 (2006), 47-70.
doi: 10.1017/S0305004105008807. |
[4] |
J. Math. Anal. Appl., 366 (2010), 297-309.
doi: 10.1016/j.jmaa.2010.01.010. |
[5] |
J. Differential Equations, 91 (1991), 268-326.
doi: 10.1016/0022-0396(91)90142-V. |
[6] |
in Trends in Mathematics: Differential equations with symbolic computation, Birkhäuser (2005), 23-35.
doi: 10.1007/3-7643-7429-2_2. |
[7] |
J. Differential Equations, 110 (1994), 86-133.
doi: 10.1006/jdeq.1994.1061. |
[8] |
in Actualités Mathématiques, Hermann, Paris, 1992. |
[9] |
Qual. Theory Dyn. Syst., 9 (2010), 101-113.
doi: 10.1007/s12346-010-0022-9. |
[10] |
Rocky Mountain J. Math., 31 (2001), 1277-1303.
doi: 10.1216/rmjm/1021249441. |
[11] |
Comput. Appl. Math., 20 (2001), 149-177. |
[12] |
Ergodic Theory Dynam. Systems, 28 (2008), 1497-1507.
doi: 10.1017/S0143385707000971. |
[13] |
Duke Math. J., 152 (2010), 1-26.
doi: 10.1215/00127094-2010-005. |
[14] |
Bull. Sci. Math., 130 (2006), 152-161.
doi: 10.1016/j.bulsci.2005.09.001. |
[15] |
Bull. Am. Math. Soc., 8 (1902), 437-479.
doi: 10.1090/S0002-9904-1902-00923-3. |
[16] |
Bull. Sci. Math., 122 (1998), 107-161.
doi: 10.1016/S0007-4497(98)80080-8. |
[17] |
in Translations of Mathematical Monographs, 94. American Mathematical Society, Providence, RI, 1991. |
[18] |
in Graduate Studies in Mathematics 86, American Mathematical Society, Providence, Rhode Island, 2008. |
[19] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47-106.
doi: 10.1142/S0218127403006352. |
[20] |
J. Dyn. Control Syst., 17 (2011), 291-310.
doi: 10.1007/s10883-011-9120-5. |
[21] |
Journal de Mathématiques, 37 (1881), 375-422; 8 (1882), 251-296; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp 3-84. Google Scholar |
[22] |
in Sur les espaces fibrés et les variétés feuilletées by W.-T. Wu, G. Reeb, Actualités Sci. Industr., 1183, Tome XI, Paris, Hermann et Cie, Éditeurs, Paris, 1952. |
[23] |
Birkhäuser Boston, Inc., Boston, MA, 2009.
doi: 10.1007/978-0-8176-4727-8. |
[24] |
Progress in Mathematics 164 Birkhäuser Verlag, Basel, 1998.
doi: 10.1007/978-3-0348-8798-4. |
[25] |
Qual. Theory Dyn. Syst., 2 (2001), 67-78.
doi: 10.1007/BF02969382. |
[26] |
in Bifurcations and Periodic Orbits of Vector Fields (Montreal, PQ, 1992), 429-467, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 408, Kluwer Acad. Publ., Dordrecht, 1993. |
[27] |
(Russian) Differencial'nye Uravnenija, 1 (1965) 53-66. English translation: Differential Equations 1 (1965), 36-47. |
[28] |
Math. Intelligencer, 20 (1998), 7-15.
doi: 10.1007/BF03025291. |
[1] |
Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021008 |
[2] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[3] |
Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021012 |
[4] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[5] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[6] |
Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021098 |
[7] |
Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026 |
[8] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008 |
[9] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[10] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[11] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[12] |
Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048 |
[13] |
Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080 |
[14] |
Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214 |
[15] |
Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021089 |
[16] |
Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023 |
[17] |
Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021117 |
[18] |
Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021070 |
[19] |
Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021019 |
[20] |
Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021038 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]