May  2015, 14(3): 1073-1095. doi: 10.3934/cpaa.2015.14.1073

Essential perturbations of polynomial vector fields with a period annulus

1. 

Department of Applied Mathematics, Babeş-Bolyai University, 1 Kogălniceanu str., Cluj-Napoca, 400084

2. 

Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69, 25001 Lleida

Received  October 2014 Revised  January 2015 Published  March 2015

Chicone--Jacobs and Iliev found the essential perturbations of quadratic systems when considering the problem of finding the cyclicity of a period annulus. Given a perturbation of a particular family of centers of polynomial differential systems of arbitrary degree for which the expressions of its Poincaré--Liapunov constants are known, we give the structure of its $k$-th Melnikov function. This allows to find the essential perturbations in concrete cases. We study here in detail the essential perturbations for all the centers of the differential systems \begin{eqnarray} \dot{x} = -y + P_{\rm d}(x,y), \quad \dot{y} = x + Q_{d}(x,y), \end{eqnarray} where $P_d$ and $Q_d$ are homogeneous polynomials of degree $d$, for $ d=2$ and $ d=3$.
Citation: Adriana Buică, Jaume Giné, Maite Grau. Essential perturbations of polynomial vector fields with a period annulus. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1073-1095. doi: 10.3934/cpaa.2015.14.1073
References:
[1]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Amer. Math. Soc. Transl., 100 (1954), 1-19.  Google Scholar

[2]

A. Buică, A. Gasull and J. Yang, The third order Melnikov function of a quadratic center under quadratic perturbations, J. Math. Anal. Appl., 331 (2007), 443-454. doi: 10.1016/j.jmaa.2006.09.008.  Google Scholar

[3]

M. Caubergh and F. Dumortier, Algebraic curves of maximal cyclicity, Math. Proc. Camb. Phil. Soc., 140 (2006), 47-70. doi: 10.1017/S0305004105008807.  Google Scholar

[4]

M. Caubergh and A. Gasull, Absolute cyclicity, Lyapunov quantities and center conditions, J. Math. Anal. Appl., 366 (2010), 297-309. doi: 10.1016/j.jmaa.2010.01.010.  Google Scholar

[5]

C. Chicone and M. Jacobs, Bifurcations of limit cycles from quadratic isochrones, J. Differential Equations, 91 (1991), 268-326. doi: 10.1016/0022-0396(91)90142-V.  Google Scholar

[6]

C. Christopher, Estimating limit cycle bifurcations from centers, in Trends in Mathematics: Differential equations with symbolic computation, Birkhäuser (2005), 23-35. doi: 10.1007/3-7643-7429-2_2.  Google Scholar

[7]

F. Dumortier, R. Roussarie and C. Rousseau, Hilbert's 16th problem for quadratic vector fields, J. Differential Equations, 110 (1994), 86-133. doi: 10.1006/jdeq.1994.1061.  Google Scholar

[8]

J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, in Actualités Mathématiques, Hermann, Paris, 1992.  Google Scholar

[9]

A. Gasull and J. Giné, Cyclicity versus Center problem, Qual. Theory Dyn. Syst., 9 (2010), 101-113. doi: 10.1007/s12346-010-0022-9.  Google Scholar

[10]

A. Gasull and J. Torregrosa, A relation between small amplitude and big limit cycles, Rocky Mountain J. Math., 31 (2001), 1277-1303. doi: 10.1216/rmjm/1021249441.  Google Scholar

[11]

A. Gasull and J. Torregrosa, A new approach to the computation of the Lyapunov constants, Comput. Appl. Math., 20 (2001), 149-177.  Google Scholar

[12]

L. Gavrilov, Cyclicity of period annuli and principalization of Bautin ideals, Ergodic Theory Dynam. Systems, 28 (2008), 1497-1507. doi: 10.1017/S0143385707000971.  Google Scholar

[13]

L. Gavrilov and D. Novikov, On the finite cyclicity of open period annuli, Duke Math. J., 152 (2010), 1-26. doi: 10.1215/00127094-2010-005.  Google Scholar

[14]

J. Giné, The nondegenerate center problem and the inverse integrating factor, Bull. Sci. Math., 130 (2006), 152-161. doi: 10.1016/j.bulsci.2005.09.001.  Google Scholar

[15]

D. Hilbert, Mathematical problems, Bull. Am. Math. Soc., 8 (1902), 437-479. doi: 10.1090/S0002-9904-1902-00923-3.  Google Scholar

[16]

I. D. Iliev, Perturbations of quadratic centers, Bull. Sci. Math., 122 (1998), 107-161. doi: 10.1016/S0007-4497(98)80080-8.  Google Scholar

[17]

Yu. S. Il'yashenko, Finiteness theorems for limit cycles, in Translations of Mathematical Monographs, 94. American Mathematical Society, Providence, RI, 1991.  Google Scholar

[18]

Y. Ilyashenko and S. Yakovenko, Lectures on Analytic Differential Equations, in Graduate Studies in Mathematics 86, American Mathematical Society, Providence, Rhode Island, 2008.  Google Scholar

[19]

Jibin Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47-106. doi: 10.1142/S0218127403006352.  Google Scholar

[20]

P. Mardešić, M. Saavedra, M. Uribe and M. Wallace, Unfolding of the Hamiltonian triangle vector field, J. Dyn. Control Syst., 17 (2011), 291-310. doi: 10.1007/s10883-011-9120-5.  Google Scholar

[21]

H. Poincaré, Méemoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; 8 (1882), 251-296; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp 3-84. Google Scholar

[22]

G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, pp. 91-158 in Sur les espaces fibrés et les variétés feuilletées by W.-T. Wu, G. Reeb, Actualités Sci. Industr., 1183, Tome XI, Paris, Hermann et Cie, Éditeurs, Paris, 1952.  Google Scholar

[23]

V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhäuser Boston, Inc., Boston, MA, 2009. doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[24]

R. Roussarie, Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem, Progress in Mathematics 164 Birkhäuser Verlag, Basel, 1998. doi: 10.1007/978-3-0348-8798-4.  Google Scholar

[25]

R. Roussarie, Melnikov functions and Bautin ideal, Qual. Theory Dyn. Syst., 2 (2001), 67-78. doi: 10.1007/BF02969382.  Google Scholar

[26]

D. Schlomiuk, Algebraic and geometric aspects of the theory of polynomial vector fields, in Bifurcations and Periodic Orbits of Vector Fields (Montreal, PQ, 1992), 429-467, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 408, Kluwer Acad. Publ., Dordrecht, 1993.  Google Scholar

[27]

K. S. Sibirskiĭ, On the number of limit cycles in the neighborhood of a singular point, (Russian) Differencial'nye Uravnenija, 1 (1965) 53-66. English translation: Differential Equations 1 (1965), 36-47.  Google Scholar

[28]

S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15. doi: 10.1007/BF03025291.  Google Scholar

show all references

References:
[1]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Amer. Math. Soc. Transl., 100 (1954), 1-19.  Google Scholar

[2]

A. Buică, A. Gasull and J. Yang, The third order Melnikov function of a quadratic center under quadratic perturbations, J. Math. Anal. Appl., 331 (2007), 443-454. doi: 10.1016/j.jmaa.2006.09.008.  Google Scholar

[3]

M. Caubergh and F. Dumortier, Algebraic curves of maximal cyclicity, Math. Proc. Camb. Phil. Soc., 140 (2006), 47-70. doi: 10.1017/S0305004105008807.  Google Scholar

[4]

M. Caubergh and A. Gasull, Absolute cyclicity, Lyapunov quantities and center conditions, J. Math. Anal. Appl., 366 (2010), 297-309. doi: 10.1016/j.jmaa.2010.01.010.  Google Scholar

[5]

C. Chicone and M. Jacobs, Bifurcations of limit cycles from quadratic isochrones, J. Differential Equations, 91 (1991), 268-326. doi: 10.1016/0022-0396(91)90142-V.  Google Scholar

[6]

C. Christopher, Estimating limit cycle bifurcations from centers, in Trends in Mathematics: Differential equations with symbolic computation, Birkhäuser (2005), 23-35. doi: 10.1007/3-7643-7429-2_2.  Google Scholar

[7]

F. Dumortier, R. Roussarie and C. Rousseau, Hilbert's 16th problem for quadratic vector fields, J. Differential Equations, 110 (1994), 86-133. doi: 10.1006/jdeq.1994.1061.  Google Scholar

[8]

J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, in Actualités Mathématiques, Hermann, Paris, 1992.  Google Scholar

[9]

A. Gasull and J. Giné, Cyclicity versus Center problem, Qual. Theory Dyn. Syst., 9 (2010), 101-113. doi: 10.1007/s12346-010-0022-9.  Google Scholar

[10]

A. Gasull and J. Torregrosa, A relation between small amplitude and big limit cycles, Rocky Mountain J. Math., 31 (2001), 1277-1303. doi: 10.1216/rmjm/1021249441.  Google Scholar

[11]

A. Gasull and J. Torregrosa, A new approach to the computation of the Lyapunov constants, Comput. Appl. Math., 20 (2001), 149-177.  Google Scholar

[12]

L. Gavrilov, Cyclicity of period annuli and principalization of Bautin ideals, Ergodic Theory Dynam. Systems, 28 (2008), 1497-1507. doi: 10.1017/S0143385707000971.  Google Scholar

[13]

L. Gavrilov and D. Novikov, On the finite cyclicity of open period annuli, Duke Math. J., 152 (2010), 1-26. doi: 10.1215/00127094-2010-005.  Google Scholar

[14]

J. Giné, The nondegenerate center problem and the inverse integrating factor, Bull. Sci. Math., 130 (2006), 152-161. doi: 10.1016/j.bulsci.2005.09.001.  Google Scholar

[15]

D. Hilbert, Mathematical problems, Bull. Am. Math. Soc., 8 (1902), 437-479. doi: 10.1090/S0002-9904-1902-00923-3.  Google Scholar

[16]

I. D. Iliev, Perturbations of quadratic centers, Bull. Sci. Math., 122 (1998), 107-161. doi: 10.1016/S0007-4497(98)80080-8.  Google Scholar

[17]

Yu. S. Il'yashenko, Finiteness theorems for limit cycles, in Translations of Mathematical Monographs, 94. American Mathematical Society, Providence, RI, 1991.  Google Scholar

[18]

Y. Ilyashenko and S. Yakovenko, Lectures on Analytic Differential Equations, in Graduate Studies in Mathematics 86, American Mathematical Society, Providence, Rhode Island, 2008.  Google Scholar

[19]

Jibin Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47-106. doi: 10.1142/S0218127403006352.  Google Scholar

[20]

P. Mardešić, M. Saavedra, M. Uribe and M. Wallace, Unfolding of the Hamiltonian triangle vector field, J. Dyn. Control Syst., 17 (2011), 291-310. doi: 10.1007/s10883-011-9120-5.  Google Scholar

[21]

H. Poincaré, Méemoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; 8 (1882), 251-296; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp 3-84. Google Scholar

[22]

G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, pp. 91-158 in Sur les espaces fibrés et les variétés feuilletées by W.-T. Wu, G. Reeb, Actualités Sci. Industr., 1183, Tome XI, Paris, Hermann et Cie, Éditeurs, Paris, 1952.  Google Scholar

[23]

V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhäuser Boston, Inc., Boston, MA, 2009. doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[24]

R. Roussarie, Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem, Progress in Mathematics 164 Birkhäuser Verlag, Basel, 1998. doi: 10.1007/978-3-0348-8798-4.  Google Scholar

[25]

R. Roussarie, Melnikov functions and Bautin ideal, Qual. Theory Dyn. Syst., 2 (2001), 67-78. doi: 10.1007/BF02969382.  Google Scholar

[26]

D. Schlomiuk, Algebraic and geometric aspects of the theory of polynomial vector fields, in Bifurcations and Periodic Orbits of Vector Fields (Montreal, PQ, 1992), 429-467, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 408, Kluwer Acad. Publ., Dordrecht, 1993.  Google Scholar

[27]

K. S. Sibirskiĭ, On the number of limit cycles in the neighborhood of a singular point, (Russian) Differencial'nye Uravnenija, 1 (1965) 53-66. English translation: Differential Equations 1 (1965), 36-47.  Google Scholar

[28]

S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15. doi: 10.1007/BF03025291.  Google Scholar

[1]

Isaac A. García, Douglas S. Shafer. Cyclicity of a class of polynomial nilpotent center singularities. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2497-2520. doi: 10.3934/dcds.2016.36.2497

[2]

Jianfeng Huang, Yulin Zhao. Bifurcation of isolated closed orbits from degenerated singularity in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 2861-2883. doi: 10.3934/dcds.2013.33.2861

[3]

Min Hu, Tao Li, Xingwu Chen. Bi-center problem and Hopf cyclicity of a Cubic Liénard system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 401-414. doi: 10.3934/dcdsb.2019187

[4]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[5]

Mikhail Kamenskii, Boris Mikhaylenko. Bifurcation of periodic solutions from a degenerated cycle in equations of neutral type with a small delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 437-452. doi: 10.3934/dcdsb.2013.18.437

[6]

Horst R. Thieme. Positive perturbation of operator semigroups: growth bounds, essential compactness and asynchronous exponential growth. Discrete & Continuous Dynamical Systems, 1998, 4 (4) : 735-764. doi: 10.3934/dcds.1998.4.735

[7]

Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203

[8]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897

[9]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks & Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009

[10]

Anna Lisa Amadori. Global bifurcation for the Hénon problem. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4797-4816. doi: 10.3934/cpaa.2020212

[11]

Chunyan Ji, Daqing Jiang. Persistence and non-persistence of a mutualism system with stochastic perturbation. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 867-889. doi: 10.3934/dcds.2012.32.867

[12]

Ana Paula S. Dias, Paul C. Matthews, Ana Rodrigues. Generating functions for Hopf bifurcation with $ S_n$-symmetry. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 823-842. doi: 10.3934/dcds.2009.25.823

[13]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[14]

Felipe Rivero. Time dependent perturbation in a non-autonomous non-classical parabolic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 209-221. doi: 10.3934/dcdsb.2013.18.209

[15]

Na Li, Maoan Han, Valery G. Romanovski. Cyclicity of some Liénard Systems. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2127-2150. doi: 10.3934/cpaa.2015.14.2127

[16]

Sergio R. López-Permouth, Benigno R. Parra-Avila, Steve Szabo. Dual generalizations of the concept of cyclicity of codes. Advances in Mathematics of Communications, 2009, 3 (3) : 227-234. doi: 10.3934/amc.2009.3.227

[17]

Carmen Núñez, Rafael Obaya. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 701-730. doi: 10.3934/dcdsb.2008.9.701

[18]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[19]

Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031

[20]

José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]