May  2015, 14(3): 1147-1167. doi: 10.3934/cpaa.2015.14.1147

Steady-state solutions and stability for a cubic autocatalysis model

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, China

2. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, Shaanxi 710119

3. 

Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, China

Received  May 2014 Revised  October 2015 Published  March 2015

A reaction-diffusion system, based on the cubic autocatalytic reaction scheme, with the prescribed concentration boundary conditions is considered. The linear stability of the unique spatially homogeneous steady state solution is discussed in detail to reveal a necessary condition for the bifurcation of this solution. The spatially non-uniform stationary structures, especially bifurcating from the double eigenvalue, are studied by the use of Lyapunov-Schmidt technique and singularity theory. Further information about the multiplicity and stability of the bifurcation solutions are obtained. Numerical examples are presented to support our theoretical results.
Citation: Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147
References:
[1]

J. C. Tsai, Existence of traveling waves in a simple isothermal chemical system with the same order for autocatalysis and decay, Quart. Appl. Math., 69 (2011), 123-146.

[2]

R. Peng and F. Yi, On spatiotemporal pattern formation in a diffusive bimolecular model, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 217-230. doi: 10.3934/dcdsb.2011.15.217.

[3]

Y. You, Dynamics of three-component reversible Gray-Scott model, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1671-1688. doi: 10.3934/dcdsb.2010.14.1671.

[4]

X. F. Chen and Y. W. Qi, Propagation of local disturbances in reaction diffusion systems modeling quadratic autocatalysis, SIAM J. Appl. Math., 69 (2008), 273-282. doi: 10.1137/07070276X.

[5]

A. L. Kay, D. J. Needham and J. A. Leach, Travelling waves for a coupled, singular reaction-diffusion system arising from a model of fractional order autocatalysis with decay. I. Permanent form travelling waves, Nonlinearity, 16 (2003), 735-770. doi: 10.1088/0951-7715/16/2/322.

[6]

J. A. Leach and J. C. Wei, Pattern formation in a simple chemical system with general orders of autocatalysis and decay. I. Stability analysis, Phys. D, 180 (2003), 185-209. doi: 10.1016/S0167-2789(03)00065-4.

[7]

P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and other forms of multistability, Chem. Eng. Sci., 39 (1983), 29-43.

[8]

P. Gray and S. K. Scott, Autocatalytic reactions in the CSTR: oscillations and instabilities in the system $A + 2B\rightarrow 3B$; $B\rightarrow C$, Chem. Eng. Sci., 39 (1984), 1087-1097.

[9]

A. D'Anna, P. G. Lignola and S. K. Scott, The application of singularity theory to isothermal autocatalytic open systems, Proc. Roy. Soc. A, 403 (1986), 341-363.

[10]

B. Peng, S. K. Scott and K. Showalter, Period doubling and chaos in a three variable autocatalator, J. Phys. Chem., 94 (1990), 5243-5246.

[11]

D. T. Lynch, Chaotic behavior of reactions systems: mixed cubic and quadratic autocatalysis, Chem. Eng. Sci., 47 (1992), 4435-4444.

[12]

K. Alhumaizi and R. Aris, Chaos in a simple two-phase reactor, Chaos Solitons Fractals, 4 (1994), 1985-2014.

[13]

H. I. Abdel-Gawad and A. M. El-Shrae, Approximate solutions to the two-cell cubic autocatalytic reaction model, Kyungpook Math. J., 44 (2004), 187-211.

[14]

E. A. Elrifai, On cubic autocatalytic chemical reaction model, CSTR and invariants of knots, Far East J. Appl. Math., 32 (2008), 435-443.

[15]

J. H. Merkin, D. J. Needham and S. K. Scott, Oscillatory chemical reactions in closed vessels, Proc. Roy. Soc. London Ser. A, 406 (1986), 299-323.

[16]

A. B. Finlayson and J. H. Merkin, Creation of spatial structure by an electric field applied to an ionic cubic autocatalator system, J. Engrg. Math., 38 (2000), 279-296. doi: 10.1023/A:1004799200173.

[17]

L. S. Chen and D. D. Wang, A biochemical oscillation, Acta Math. Sci. Ser. B Engl. Ed., 5 (1985), 261-266.

[18]

J. H. Merkin, D. J. Needham and S. K. Scott, On the creation, growth and extinction of oscillatory solutions for a simple pooled chemical reaction scheme, SIAM J. Appl. Math., 47 (1987), 1040-1060. doi: 10.1137/0147068.

[19]

J. H. Merkin and D. J. Needham, Reaction-diffusion in a simple pooled chemical system, Dyn. Stab. Syst., 4 (1989), 141-167. doi: 10.1080/02681118908806069.

[20]

D. J. Needham and J. H. Merkin, Pattern formation through reaction and diffusion in a simple pooled-chemical system, Dyn. Stab. Syst., 4 (1989), 259-284. doi: 10.1080/02681118908806076.

[21]

R. Hill, J. H. Merkin and D. J. Needham, Stable pattern and standing wave formation in a simple isothermal cubic autocatalytic reaction scheme, J. Engrg. Math., 29 (1995), 413-436. doi: 10.1007/BF00043976.

[22]

J. Jang, W. M. Ni and M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model, J. Dynam. Differential Equations, 16 (2005), 297-320. doi: 10.1007/s10884-004-2782-x.

[23]

M. H. Wei, J. H. Wu and G. H. Guo, Turing structures and stability for the 1-D Lengyel-Epstein system, J. Math. Chem., 50 (2012), 2374-2396. doi: 10.1007/s10910-012-0037-3.

[24]

M. G. Crandall and P. Rabinowitz, Bifurcation from simple eigenvalue, J. Funct. Anal., 8 (1971), 321-340.

[25]

K. J. Brown, Local and global bifurcation results for a semilinear boundary value problem, J. Differential Equations, 239 (2007), 296-310. doi: 10.1016/j.jde.2007.05.013.

[26]

D. Schaeffer and M. Golubitsky, Bifurcation analysis near a double eigenvalue of a model chemical reaction, Arch. Rational Mech. Anal., 75 (1981), 315-347. doi: 10.1007/BF00256382.

[27]

M. Golubitsky and D. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. I, Springer, New York, 1985. doi: 10.1007/978-1-4612-5034-0.

[28]

M. Golubitsky and D. Schaeffer, Imperfect bifurcation in the presence of symmetry, Comm. Math. Phys., 67 (1979), 205-232.

[29]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.

[30]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39 (2000), 817-835. doi: 10.1016/S0362-546X(98)00250-8.

[31]

M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math., 32 (1979), 21-98. doi: 10.1002/cpa.3160320103.

show all references

References:
[1]

J. C. Tsai, Existence of traveling waves in a simple isothermal chemical system with the same order for autocatalysis and decay, Quart. Appl. Math., 69 (2011), 123-146.

[2]

R. Peng and F. Yi, On spatiotemporal pattern formation in a diffusive bimolecular model, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 217-230. doi: 10.3934/dcdsb.2011.15.217.

[3]

Y. You, Dynamics of three-component reversible Gray-Scott model, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1671-1688. doi: 10.3934/dcdsb.2010.14.1671.

[4]

X. F. Chen and Y. W. Qi, Propagation of local disturbances in reaction diffusion systems modeling quadratic autocatalysis, SIAM J. Appl. Math., 69 (2008), 273-282. doi: 10.1137/07070276X.

[5]

A. L. Kay, D. J. Needham and J. A. Leach, Travelling waves for a coupled, singular reaction-diffusion system arising from a model of fractional order autocatalysis with decay. I. Permanent form travelling waves, Nonlinearity, 16 (2003), 735-770. doi: 10.1088/0951-7715/16/2/322.

[6]

J. A. Leach and J. C. Wei, Pattern formation in a simple chemical system with general orders of autocatalysis and decay. I. Stability analysis, Phys. D, 180 (2003), 185-209. doi: 10.1016/S0167-2789(03)00065-4.

[7]

P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and other forms of multistability, Chem. Eng. Sci., 39 (1983), 29-43.

[8]

P. Gray and S. K. Scott, Autocatalytic reactions in the CSTR: oscillations and instabilities in the system $A + 2B\rightarrow 3B$; $B\rightarrow C$, Chem. Eng. Sci., 39 (1984), 1087-1097.

[9]

A. D'Anna, P. G. Lignola and S. K. Scott, The application of singularity theory to isothermal autocatalytic open systems, Proc. Roy. Soc. A, 403 (1986), 341-363.

[10]

B. Peng, S. K. Scott and K. Showalter, Period doubling and chaos in a three variable autocatalator, J. Phys. Chem., 94 (1990), 5243-5246.

[11]

D. T. Lynch, Chaotic behavior of reactions systems: mixed cubic and quadratic autocatalysis, Chem. Eng. Sci., 47 (1992), 4435-4444.

[12]

K. Alhumaizi and R. Aris, Chaos in a simple two-phase reactor, Chaos Solitons Fractals, 4 (1994), 1985-2014.

[13]

H. I. Abdel-Gawad and A. M. El-Shrae, Approximate solutions to the two-cell cubic autocatalytic reaction model, Kyungpook Math. J., 44 (2004), 187-211.

[14]

E. A. Elrifai, On cubic autocatalytic chemical reaction model, CSTR and invariants of knots, Far East J. Appl. Math., 32 (2008), 435-443.

[15]

J. H. Merkin, D. J. Needham and S. K. Scott, Oscillatory chemical reactions in closed vessels, Proc. Roy. Soc. London Ser. A, 406 (1986), 299-323.

[16]

A. B. Finlayson and J. H. Merkin, Creation of spatial structure by an electric field applied to an ionic cubic autocatalator system, J. Engrg. Math., 38 (2000), 279-296. doi: 10.1023/A:1004799200173.

[17]

L. S. Chen and D. D. Wang, A biochemical oscillation, Acta Math. Sci. Ser. B Engl. Ed., 5 (1985), 261-266.

[18]

J. H. Merkin, D. J. Needham and S. K. Scott, On the creation, growth and extinction of oscillatory solutions for a simple pooled chemical reaction scheme, SIAM J. Appl. Math., 47 (1987), 1040-1060. doi: 10.1137/0147068.

[19]

J. H. Merkin and D. J. Needham, Reaction-diffusion in a simple pooled chemical system, Dyn. Stab. Syst., 4 (1989), 141-167. doi: 10.1080/02681118908806069.

[20]

D. J. Needham and J. H. Merkin, Pattern formation through reaction and diffusion in a simple pooled-chemical system, Dyn. Stab. Syst., 4 (1989), 259-284. doi: 10.1080/02681118908806076.

[21]

R. Hill, J. H. Merkin and D. J. Needham, Stable pattern and standing wave formation in a simple isothermal cubic autocatalytic reaction scheme, J. Engrg. Math., 29 (1995), 413-436. doi: 10.1007/BF00043976.

[22]

J. Jang, W. M. Ni and M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model, J. Dynam. Differential Equations, 16 (2005), 297-320. doi: 10.1007/s10884-004-2782-x.

[23]

M. H. Wei, J. H. Wu and G. H. Guo, Turing structures and stability for the 1-D Lengyel-Epstein system, J. Math. Chem., 50 (2012), 2374-2396. doi: 10.1007/s10910-012-0037-3.

[24]

M. G. Crandall and P. Rabinowitz, Bifurcation from simple eigenvalue, J. Funct. Anal., 8 (1971), 321-340.

[25]

K. J. Brown, Local and global bifurcation results for a semilinear boundary value problem, J. Differential Equations, 239 (2007), 296-310. doi: 10.1016/j.jde.2007.05.013.

[26]

D. Schaeffer and M. Golubitsky, Bifurcation analysis near a double eigenvalue of a model chemical reaction, Arch. Rational Mech. Anal., 75 (1981), 315-347. doi: 10.1007/BF00256382.

[27]

M. Golubitsky and D. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. I, Springer, New York, 1985. doi: 10.1007/978-1-4612-5034-0.

[28]

M. Golubitsky and D. Schaeffer, Imperfect bifurcation in the presence of symmetry, Comm. Math. Phys., 67 (1979), 205-232.

[29]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.

[30]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39 (2000), 817-835. doi: 10.1016/S0362-546X(98)00250-8.

[31]

M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math., 32 (1979), 21-98. doi: 10.1002/cpa.3160320103.

[1]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739

[2]

Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

[3]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[4]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[5]

Lijuan Wang, Hongling Jiang, Ying Li. Positive steady state solutions of a plant-pollinator model with diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1805-1819. doi: 10.3934/dcdsb.2015.20.1805

[6]

Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1279-1297. doi: 10.3934/cpaa.2013.12.1279

[7]

Shihe Xu, Fangwei Zhang, Meng Bai. Stability of positive steady-state solutions to a time-delayed system with some applications. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021286

[8]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[9]

Hiroshi Ito. Input-to-state stability and Lyapunov functions with explicit domains for SIR model of infectious diseases. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5171-5196. doi: 10.3934/dcdsb.2020338

[10]

Li Ma, Youquan Luo. Dynamics of positive steady-state solutions of a nonlocal dispersal logistic model with nonlocal terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2555-2582. doi: 10.3934/dcdsb.2020022

[11]

Chao Xing, Ping Zhou, Hong Luo. The steady state solutions to thermohaline circulation equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3709-3722. doi: 10.3934/dcdsb.2016117

[12]

Youcef Amirat, Kamel Hamdache. Steady state solutions of ferrofluid flow models. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2329-2355. doi: 10.3934/cpaa.2016039

[13]

Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613

[14]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941

[15]

Dorothy Bollman, Omar Colón-Reyes. Determining steady state behaviour of discrete monomial dynamical systems. Advances in Mathematics of Communications, 2017, 11 (2) : 283-287. doi: 10.3934/amc.2017019

[16]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[17]

Meihua Wei, Yanling Li, Xi Wei. Stability and bifurcation with singularity for a glycolysis model under no-flux boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5203-5224. doi: 10.3934/dcdsb.2019129

[18]

Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172

[19]

Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071

[20]

Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]