May  2015, 14(3): 1147-1167. doi: 10.3934/cpaa.2015.14.1147

Steady-state solutions and stability for a cubic autocatalysis model

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, China

2. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, Shaanxi 710119

3. 

Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, China

Received  May 2014 Revised  October 2015 Published  March 2015

A reaction-diffusion system, based on the cubic autocatalytic reaction scheme, with the prescribed concentration boundary conditions is considered. The linear stability of the unique spatially homogeneous steady state solution is discussed in detail to reveal a necessary condition for the bifurcation of this solution. The spatially non-uniform stationary structures, especially bifurcating from the double eigenvalue, are studied by the use of Lyapunov-Schmidt technique and singularity theory. Further information about the multiplicity and stability of the bifurcation solutions are obtained. Numerical examples are presented to support our theoretical results.
Citation: Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147
References:
[1]

J. C. Tsai, Existence of traveling waves in a simple isothermal chemical system with the same order for autocatalysis and decay,, \emph{Quart. Appl. Math.}, 69 (2011), 123.   Google Scholar

[2]

R. Peng and F. Yi, On spatiotemporal pattern formation in a diffusive bimolecular model,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 15 (2011), 217.  doi: 10.3934/dcdsb.2011.15.217.  Google Scholar

[3]

Y. You, Dynamics of three-component reversible Gray-Scott model,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 14 (2010), 1671.  doi: 10.3934/dcdsb.2010.14.1671.  Google Scholar

[4]

X. F. Chen and Y. W. Qi, Propagation of local disturbances in reaction diffusion systems modeling quadratic autocatalysis,, \emph{SIAM J. Appl. Math.}, 69 (2008), 273.  doi: 10.1137/07070276X.  Google Scholar

[5]

A. L. Kay, D. J. Needham and J. A. Leach, Travelling waves for a coupled, singular reaction-diffusion system arising from a model of fractional order autocatalysis with decay. I. Permanent form travelling waves,, \emph{Nonlinearity}, 16 (2003), 735.  doi: 10.1088/0951-7715/16/2/322.  Google Scholar

[6]

J. A. Leach and J. C. Wei, Pattern formation in a simple chemical system with general orders of autocatalysis and decay. I. Stability analysis,, \emph{Phys. D}, 180 (2003), 185.  doi: 10.1016/S0167-2789(03)00065-4.  Google Scholar

[7]

P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and other forms of multistability,, \emph{Chem. Eng. Sci.}, 39 (1983), 29.   Google Scholar

[8]

P. Gray and S. K. Scott, Autocatalytic reactions in the CSTR: oscillations and instabilities in the system $A + 2B\rightarrow 3B$; $B\rightarrow C$,, \emph{Chem. Eng. Sci.}, 39 (1984), 1087.   Google Scholar

[9]

A. D'Anna, P. G. Lignola and S. K. Scott, The application of singularity theory to isothermal autocatalytic open systems,, \emph{Proc. Roy. Soc. A}, 403 (1986), 341.   Google Scholar

[10]

B. Peng, S. K. Scott and K. Showalter, Period doubling and chaos in a three variable autocatalator,, \emph{J. Phys. Chem.}, 94 (1990), 5243.   Google Scholar

[11]

D. T. Lynch, Chaotic behavior of reactions systems: mixed cubic and quadratic autocatalysis,, \emph{Chem. Eng. Sci.}, 47 (1992), 4435.   Google Scholar

[12]

K. Alhumaizi and R. Aris, Chaos in a simple two-phase reactor,, \emph{Chaos Solitons Fractals}, 4 (1994), 1985.   Google Scholar

[13]

H. I. Abdel-Gawad and A. M. El-Shrae, Approximate solutions to the two-cell cubic autocatalytic reaction model,, \emph{Kyungpook Math. J.}, 44 (2004), 187.   Google Scholar

[14]

E. A. Elrifai, On cubic autocatalytic chemical reaction model, CSTR and invariants of knots,, \emph{Far East J. Appl. Math.}, 32 (2008), 435.   Google Scholar

[15]

J. H. Merkin, D. J. Needham and S. K. Scott, Oscillatory chemical reactions in closed vessels,, \emph{Proc. Roy. Soc. London Ser. A}, 406 (1986), 299.   Google Scholar

[16]

A. B. Finlayson and J. H. Merkin, Creation of spatial structure by an electric field applied to an ionic cubic autocatalator system,, \emph{J. Engrg. Math.}, 38 (2000), 279.  doi: 10.1023/A:1004799200173.  Google Scholar

[17]

L. S. Chen and D. D. Wang, A biochemical oscillation,, \emph{Acta Math. Sci. Ser. B Engl. Ed.}, 5 (1985), 261.   Google Scholar

[18]

J. H. Merkin, D. J. Needham and S. K. Scott, On the creation, growth and extinction of oscillatory solutions for a simple pooled chemical reaction scheme,, \emph{SIAM J. Appl. Math.}, 47 (1987), 1040.  doi: 10.1137/0147068.  Google Scholar

[19]

J. H. Merkin and D. J. Needham, Reaction-diffusion in a simple pooled chemical system,, \emph{Dyn. Stab. Syst.}, 4 (1989), 141.  doi: 10.1080/02681118908806069.  Google Scholar

[20]

D. J. Needham and J. H. Merkin, Pattern formation through reaction and diffusion in a simple pooled-chemical system,, \emph{Dyn. Stab. Syst.}, 4 (1989), 259.  doi: 10.1080/02681118908806076.  Google Scholar

[21]

R. Hill, J. H. Merkin and D. J. Needham, Stable pattern and standing wave formation in a simple isothermal cubic autocatalytic reaction scheme,, \emph{J. Engrg. Math.}, 29 (1995), 413.  doi: 10.1007/BF00043976.  Google Scholar

[22]

J. Jang, W. M. Ni and M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model,, \emph{J. Dynam. Differential Equations}, 16 (2005), 297.  doi: 10.1007/s10884-004-2782-x.  Google Scholar

[23]

M. H. Wei, J. H. Wu and G. H. Guo, Turing structures and stability for the 1-D Lengyel-Epstein system,, \emph{J. Math. Chem.}, 50 (2012), 2374.  doi: 10.1007/s10910-012-0037-3.  Google Scholar

[24]

M. G. Crandall and P. Rabinowitz, Bifurcation from simple eigenvalue,, \emph{J. Funct. Anal.}, 8 (1971), 321.   Google Scholar

[25]

K. J. Brown, Local and global bifurcation results for a semilinear boundary value problem,, \emph{J. Differential Equations}, 239 (2007), 296.  doi: 10.1016/j.jde.2007.05.013.  Google Scholar

[26]

D. Schaeffer and M. Golubitsky, Bifurcation analysis near a double eigenvalue of a model chemical reaction,, \emph{Arch. Rational Mech. Anal.}, 75 (1981), 315.  doi: 10.1007/BF00256382.  Google Scholar

[27]

M. Golubitsky and D. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. I,, Springer, (1985).  doi: 10.1007/978-1-4612-5034-0.  Google Scholar

[28]

M. Golubitsky and D. Schaeffer, Imperfect bifurcation in the presence of symmetry,, \emph{Comm. Math. Phys.}, 67 (1979), 205.   Google Scholar

[29]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, \emph{J. Funct. Anal.}, 7 (1971), 487.   Google Scholar

[30]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, \emph{Nonlinear Anal.}, 39 (2000), 817.  doi: 10.1016/S0362-546X(98)00250-8.  Google Scholar

[31]

M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory,, \emph{Comm. Pure Appl. Math.}, 32 (1979), 21.  doi: 10.1002/cpa.3160320103.  Google Scholar

show all references

References:
[1]

J. C. Tsai, Existence of traveling waves in a simple isothermal chemical system with the same order for autocatalysis and decay,, \emph{Quart. Appl. Math.}, 69 (2011), 123.   Google Scholar

[2]

R. Peng and F. Yi, On spatiotemporal pattern formation in a diffusive bimolecular model,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 15 (2011), 217.  doi: 10.3934/dcdsb.2011.15.217.  Google Scholar

[3]

Y. You, Dynamics of three-component reversible Gray-Scott model,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 14 (2010), 1671.  doi: 10.3934/dcdsb.2010.14.1671.  Google Scholar

[4]

X. F. Chen and Y. W. Qi, Propagation of local disturbances in reaction diffusion systems modeling quadratic autocatalysis,, \emph{SIAM J. Appl. Math.}, 69 (2008), 273.  doi: 10.1137/07070276X.  Google Scholar

[5]

A. L. Kay, D. J. Needham and J. A. Leach, Travelling waves for a coupled, singular reaction-diffusion system arising from a model of fractional order autocatalysis with decay. I. Permanent form travelling waves,, \emph{Nonlinearity}, 16 (2003), 735.  doi: 10.1088/0951-7715/16/2/322.  Google Scholar

[6]

J. A. Leach and J. C. Wei, Pattern formation in a simple chemical system with general orders of autocatalysis and decay. I. Stability analysis,, \emph{Phys. D}, 180 (2003), 185.  doi: 10.1016/S0167-2789(03)00065-4.  Google Scholar

[7]

P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and other forms of multistability,, \emph{Chem. Eng. Sci.}, 39 (1983), 29.   Google Scholar

[8]

P. Gray and S. K. Scott, Autocatalytic reactions in the CSTR: oscillations and instabilities in the system $A + 2B\rightarrow 3B$; $B\rightarrow C$,, \emph{Chem. Eng. Sci.}, 39 (1984), 1087.   Google Scholar

[9]

A. D'Anna, P. G. Lignola and S. K. Scott, The application of singularity theory to isothermal autocatalytic open systems,, \emph{Proc. Roy. Soc. A}, 403 (1986), 341.   Google Scholar

[10]

B. Peng, S. K. Scott and K. Showalter, Period doubling and chaos in a three variable autocatalator,, \emph{J. Phys. Chem.}, 94 (1990), 5243.   Google Scholar

[11]

D. T. Lynch, Chaotic behavior of reactions systems: mixed cubic and quadratic autocatalysis,, \emph{Chem. Eng. Sci.}, 47 (1992), 4435.   Google Scholar

[12]

K. Alhumaizi and R. Aris, Chaos in a simple two-phase reactor,, \emph{Chaos Solitons Fractals}, 4 (1994), 1985.   Google Scholar

[13]

H. I. Abdel-Gawad and A. M. El-Shrae, Approximate solutions to the two-cell cubic autocatalytic reaction model,, \emph{Kyungpook Math. J.}, 44 (2004), 187.   Google Scholar

[14]

E. A. Elrifai, On cubic autocatalytic chemical reaction model, CSTR and invariants of knots,, \emph{Far East J. Appl. Math.}, 32 (2008), 435.   Google Scholar

[15]

J. H. Merkin, D. J. Needham and S. K. Scott, Oscillatory chemical reactions in closed vessels,, \emph{Proc. Roy. Soc. London Ser. A}, 406 (1986), 299.   Google Scholar

[16]

A. B. Finlayson and J. H. Merkin, Creation of spatial structure by an electric field applied to an ionic cubic autocatalator system,, \emph{J. Engrg. Math.}, 38 (2000), 279.  doi: 10.1023/A:1004799200173.  Google Scholar

[17]

L. S. Chen and D. D. Wang, A biochemical oscillation,, \emph{Acta Math. Sci. Ser. B Engl. Ed.}, 5 (1985), 261.   Google Scholar

[18]

J. H. Merkin, D. J. Needham and S. K. Scott, On the creation, growth and extinction of oscillatory solutions for a simple pooled chemical reaction scheme,, \emph{SIAM J. Appl. Math.}, 47 (1987), 1040.  doi: 10.1137/0147068.  Google Scholar

[19]

J. H. Merkin and D. J. Needham, Reaction-diffusion in a simple pooled chemical system,, \emph{Dyn. Stab. Syst.}, 4 (1989), 141.  doi: 10.1080/02681118908806069.  Google Scholar

[20]

D. J. Needham and J. H. Merkin, Pattern formation through reaction and diffusion in a simple pooled-chemical system,, \emph{Dyn. Stab. Syst.}, 4 (1989), 259.  doi: 10.1080/02681118908806076.  Google Scholar

[21]

R. Hill, J. H. Merkin and D. J. Needham, Stable pattern and standing wave formation in a simple isothermal cubic autocatalytic reaction scheme,, \emph{J. Engrg. Math.}, 29 (1995), 413.  doi: 10.1007/BF00043976.  Google Scholar

[22]

J. Jang, W. M. Ni and M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model,, \emph{J. Dynam. Differential Equations}, 16 (2005), 297.  doi: 10.1007/s10884-004-2782-x.  Google Scholar

[23]

M. H. Wei, J. H. Wu and G. H. Guo, Turing structures and stability for the 1-D Lengyel-Epstein system,, \emph{J. Math. Chem.}, 50 (2012), 2374.  doi: 10.1007/s10910-012-0037-3.  Google Scholar

[24]

M. G. Crandall and P. Rabinowitz, Bifurcation from simple eigenvalue,, \emph{J. Funct. Anal.}, 8 (1971), 321.   Google Scholar

[25]

K. J. Brown, Local and global bifurcation results for a semilinear boundary value problem,, \emph{J. Differential Equations}, 239 (2007), 296.  doi: 10.1016/j.jde.2007.05.013.  Google Scholar

[26]

D. Schaeffer and M. Golubitsky, Bifurcation analysis near a double eigenvalue of a model chemical reaction,, \emph{Arch. Rational Mech. Anal.}, 75 (1981), 315.  doi: 10.1007/BF00256382.  Google Scholar

[27]

M. Golubitsky and D. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. I,, Springer, (1985).  doi: 10.1007/978-1-4612-5034-0.  Google Scholar

[28]

M. Golubitsky and D. Schaeffer, Imperfect bifurcation in the presence of symmetry,, \emph{Comm. Math. Phys.}, 67 (1979), 205.   Google Scholar

[29]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, \emph{J. Funct. Anal.}, 7 (1971), 487.   Google Scholar

[30]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, \emph{Nonlinear Anal.}, 39 (2000), 817.  doi: 10.1016/S0362-546X(98)00250-8.  Google Scholar

[31]

M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory,, \emph{Comm. Pure Appl. Math.}, 32 (1979), 21.  doi: 10.1002/cpa.3160320103.  Google Scholar

[1]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[2]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[3]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[6]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[7]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[8]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[9]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[10]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[11]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[12]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[13]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[14]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[15]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[16]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[17]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[18]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[19]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[20]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]