May  2015, 14(3): 1169-1182. doi: 10.3934/cpaa.2015.14.1169

An elliptic system and the critical hyperbola

1. 

Universidade Estadual de Campinas, Campinas, CEP 13083-970

2. 

Universidade Federal da Paríba, Departamento de Matemática, João Pessoa-PB, CEP 58051-900, Brazil

3. 

Universidade Estadual de Campinas, IMECC, Departamento de Matemática, Caixa Postal 6065, CEP 13083-970, Campinas, SP

Received  June 2014 Revised  November 2014 Published  March 2015

We consider a nonlinear elliptic system of Lane-Emden type in the whole space $\mathbb{R}^{n}$, namely \begin{eqnarray} \Delta u+v| v| ^{p-1}=0, \quad x\in\mathbb{R}^{n},\\ \Delta v+u| u| ^{q-1}+f=0, \quad x\in\mathbb{R}^{n}. \end{eqnarray} Our region for $(p,q)$ covers in particular the critical and supercritical cases with respect to the critical hyperbola $\frac{1}{p+1}+\frac{1} {q+1}=\frac{n-2}{n}.$ We prove existence of solutions for $f\in L^d (\mathbb{R}^n)$, by means of a fixed point technique in the Lebesgue space $L^{r_1}\times L^{r_2}$. Our results allow unbounded solutions without $H^{s}$-regularity. The solutions are shown to be classical and positive when $f$ is smooth enough and positive. Moreover, if $f$ is radial or odd (or even), we prove that the solutions preserve these properties. Also, it is shown that the solutions $(u,v)$ are nonradial when $f$ is nonradial.
Citation: Lucas C. F. Ferreira, Everaldo Medeiros, Marcelo Montenegro. An elliptic system and the critical hyperbola. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1169-1182. doi: 10.3934/cpaa.2015.14.1169
References:
[1]

G. Bernard, An inhomogeneous semilinear equation in entire space,, \emph{J. Differential Equations}, 125 (1996), 184. doi: 10.1006/jdeq.1996.0029. Google Scholar

[2]

J. Busca and R. Manásevich, A Liouville type theorem for Lane Emden systems,, \emph{Indiana Univ. Math. J.}, 51 (2002), 37. Google Scholar

[3]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Liouville theorems for some nonlinear inequalities,, Tr. Mat. Inst. Steklova 260 (2008), 260 (2008), 97. doi: 10.1134/S0081543808010070. Google Scholar

[4]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, \emph{Discrete Contin. Dyn. Syst.}, 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar

[5]

Ph. Clément, D. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems,, \emph{Comm. Partial Differential Equations}, 17 (1992), 923. doi: 10.1080/03605309208820869. Google Scholar

[6]

Q. Dai, Entire positive solutions for inhomogeneous semilinear elliptic systems,, \emph{Glasg. Math. J.}, 47 (2005), 97. doi: 10.1017/S0017089504002101. Google Scholar

[7]

D. G. de Figueiredo and P. L. Felmer, A Liouville-type theorem for elliptic systems,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 21 (1994), 387. Google Scholar

[8]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, \emph{Comm. Partial Differential Equations}, 6 (1981), 883. doi: 10.1080/03605308108820196. Google Scholar

[9]

L. Grafakos, Classical and Modern Fourier Analysis,, Pearson Education, (2004). Google Scholar

[10]

C. Jin and C. Li, Quantitative analysis of some system of integral equations,, \emph{Cal. Var. PDEs, 26 (2006), 447. doi: 10.1007/s00526-006-0013-5. Google Scholar

[11]

L. Ma and B. Liu, Symmetry results for decay solutions of elliptic systems in the whole space,, \emph{Adv. Math.}, 225 (2010), 3052. doi: 10.1016/j.aim.2010.05.022. Google Scholar

[12]

E. Mitidieri, A Rellich type identity and applications,, \emph{Commun. Partial Differential Equations}, 18 (1993), 125. doi: 10.1080/03605309308820923. Google Scholar

[13]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\mathbbR^n$,, \emph{Differential Integral Equations}, 9 (1996), 465. Google Scholar

[14]

S. I. Pokhozhaev, Elliptic problems in $\mathbf{\mathbbR}^N$ with a supercritical exponent of nonlinearity,, \emph{Mat. Sb.}, 182 (1991), 467. Google Scholar

[15]

P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems,, \emph{Duke Math. J.}, 139 (2007), 555. doi: 10.1215/S0012-7094-07-13935-8. Google Scholar

[16]

P. Quittner and Ph. Souplet, A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces,, \emph{Arch. Ration. Mech. Anal.}, 174 (2004), 49. doi: 10.1007/s00205-004-0323-8. Google Scholar

[17]

J. Serrin and H. Zou, Existence of positive solutions of the Lane-Emden system, Dedicated to Prof. C. Vinti (Italian) (Perugia, 1996)., Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 369. Google Scholar

[18]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems,, \emph{Differential Integral Equations}, 9 (1996), 635. Google Scholar

[19]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, \emph{Adv. Math.}, 221 (2009), 1409. doi: 10.1016/j.aim.2009.02.014. Google Scholar

[20]

M. A. S. Souto, A priori estimates and existence of positive solutions of nonlinear cooperative elliptic systems,, \emph{Differential Integral Equations}, 8 (1995), 1245. Google Scholar

[21]

R. Van Der Vorst, Variational identities and applications to differential systems,, \emph{Arch. Rational Mech. Anal.}, 116 (1991), 375. doi: 10.1007/BF00375674. Google Scholar

[22]

H. Zou, Symmetry of ground states for a semilinear elliptic system,, \emph{Trans. Amer. Math. Soc.}, 352 (2000), 1217. doi: 10.1090/S0002-9947-99-02526-X. Google Scholar

[23]

H. Zou, Symmetry of positive solutions of $\Delta u+u^p=0$ in $\mathbf{\mathbbR}^n$,, \emph{J. Differential Equations}, 120 (1995), 46. doi: 10.1006/jdeq.1995.1105. Google Scholar

show all references

References:
[1]

G. Bernard, An inhomogeneous semilinear equation in entire space,, \emph{J. Differential Equations}, 125 (1996), 184. doi: 10.1006/jdeq.1996.0029. Google Scholar

[2]

J. Busca and R. Manásevich, A Liouville type theorem for Lane Emden systems,, \emph{Indiana Univ. Math. J.}, 51 (2002), 37. Google Scholar

[3]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Liouville theorems for some nonlinear inequalities,, Tr. Mat. Inst. Steklova 260 (2008), 260 (2008), 97. doi: 10.1134/S0081543808010070. Google Scholar

[4]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, \emph{Discrete Contin. Dyn. Syst.}, 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar

[5]

Ph. Clément, D. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems,, \emph{Comm. Partial Differential Equations}, 17 (1992), 923. doi: 10.1080/03605309208820869. Google Scholar

[6]

Q. Dai, Entire positive solutions for inhomogeneous semilinear elliptic systems,, \emph{Glasg. Math. J.}, 47 (2005), 97. doi: 10.1017/S0017089504002101. Google Scholar

[7]

D. G. de Figueiredo and P. L. Felmer, A Liouville-type theorem for elliptic systems,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 21 (1994), 387. Google Scholar

[8]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, \emph{Comm. Partial Differential Equations}, 6 (1981), 883. doi: 10.1080/03605308108820196. Google Scholar

[9]

L. Grafakos, Classical and Modern Fourier Analysis,, Pearson Education, (2004). Google Scholar

[10]

C. Jin and C. Li, Quantitative analysis of some system of integral equations,, \emph{Cal. Var. PDEs, 26 (2006), 447. doi: 10.1007/s00526-006-0013-5. Google Scholar

[11]

L. Ma and B. Liu, Symmetry results for decay solutions of elliptic systems in the whole space,, \emph{Adv. Math.}, 225 (2010), 3052. doi: 10.1016/j.aim.2010.05.022. Google Scholar

[12]

E. Mitidieri, A Rellich type identity and applications,, \emph{Commun. Partial Differential Equations}, 18 (1993), 125. doi: 10.1080/03605309308820923. Google Scholar

[13]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\mathbbR^n$,, \emph{Differential Integral Equations}, 9 (1996), 465. Google Scholar

[14]

S. I. Pokhozhaev, Elliptic problems in $\mathbf{\mathbbR}^N$ with a supercritical exponent of nonlinearity,, \emph{Mat. Sb.}, 182 (1991), 467. Google Scholar

[15]

P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems,, \emph{Duke Math. J.}, 139 (2007), 555. doi: 10.1215/S0012-7094-07-13935-8. Google Scholar

[16]

P. Quittner and Ph. Souplet, A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces,, \emph{Arch. Ration. Mech. Anal.}, 174 (2004), 49. doi: 10.1007/s00205-004-0323-8. Google Scholar

[17]

J. Serrin and H. Zou, Existence of positive solutions of the Lane-Emden system, Dedicated to Prof. C. Vinti (Italian) (Perugia, 1996)., Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 369. Google Scholar

[18]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems,, \emph{Differential Integral Equations}, 9 (1996), 635. Google Scholar

[19]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, \emph{Adv. Math.}, 221 (2009), 1409. doi: 10.1016/j.aim.2009.02.014. Google Scholar

[20]

M. A. S. Souto, A priori estimates and existence of positive solutions of nonlinear cooperative elliptic systems,, \emph{Differential Integral Equations}, 8 (1995), 1245. Google Scholar

[21]

R. Van Der Vorst, Variational identities and applications to differential systems,, \emph{Arch. Rational Mech. Anal.}, 116 (1991), 375. doi: 10.1007/BF00375674. Google Scholar

[22]

H. Zou, Symmetry of ground states for a semilinear elliptic system,, \emph{Trans. Amer. Math. Soc.}, 352 (2000), 1217. doi: 10.1090/S0002-9947-99-02526-X. Google Scholar

[23]

H. Zou, Symmetry of positive solutions of $\Delta u+u^p=0$ in $\mathbf{\mathbbR}^n$,, \emph{J. Differential Equations}, 120 (1995), 46. doi: 10.1006/jdeq.1995.1105. Google Scholar

[1]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the existence of solutions for the Navier-Stokes system in a sum of weak-$L^{p}$ spaces. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 171-183. doi: 10.3934/dcds.2010.27.171

[2]

Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085

[3]

Yingshu Lü. Symmetry and non-existence of solutions to an integral system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 807-821. doi: 10.3934/cpaa.2018041

[4]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[5]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[6]

Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685

[7]

Alberto Farina. Some symmetry results for entire solutions of an elliptic system arising in phase separation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2505-2511. doi: 10.3934/dcds.2014.34.2505

[8]

Simona Fornaro, Federica Gregorio, Abdelaziz Rhandi. Elliptic operators with unbounded diffusion coefficients perturbed by inverse square potentials in $L^p$--spaces. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2357-2372. doi: 10.3934/cpaa.2016040

[9]

Simona Fornaro, Luca Lorenzi. Generation results for elliptic operators with unbounded diffusion coefficients in $L^p$- and $C_b$-spaces. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 747-772. doi: 10.3934/dcds.2007.18.747

[10]

Jaeho Choi, Nitin Krishna, Nicole Magill, Alejandro Sarria. On the $ L^p $ regularity of solutions to the generalized Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-17. doi: 10.3934/dcdsb.2019142

[11]

Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125

[12]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[13]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$-Laplacian elliptic equations with weights. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 447-479. doi: 10.3934/dcds.2006.15.447

[14]

Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599

[15]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[16]

Mónica Clapp, Jorge Faya. Multiple solutions to a weakly coupled purely critical elliptic system in bounded domains. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3265-3289. doi: 10.3934/dcds.2019135

[17]

Der-Chen Chang, Jie Xiao. $L^q$-Extensions of $L^p$-spaces by fractional diffusion equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1905-1920. doi: 10.3934/dcds.2015.35.1905

[18]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[19]

Minghua Yang, Jinyi Sun. Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1617-1639. doi: 10.3934/cpaa.2017078

[20]

José Caicedo, Alfonso Castro, Rodrigo Duque, Arturo Sanjuán. Existence of $L^p$-solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1193-1202. doi: 10.3934/dcdss.2014.7.1193

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

[Back to Top]