\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A counterexample to finite time stopping property for one-harmonic map flow

Abstract / Introduction Related Papers Cited by
  • For a very strong diffusion equation like total variation flow it is often observed that the solution stops at a steady state in a finite time. This phenomenon is called a finite time stopping or a finite time extinction if the steady state is zero. Such a phenomenon is also observed in one-harmonic map flow from an interval to a unit circle when initial data is piecewise constant. However, if the target manifold is a unit two-dimensional sphere, the finite time stopping may not occur. An explicit example is given in this paper.
    Mathematics Subject Classification: Primary: 35K67; Secondary: 35K51, 35K92, 58E20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Andreu, V. Caselles, J. I. Díaz and J. M. Mazón, Some Qualitative properties for the total variation flow, Journal of Functional Analysis, 188 (2) (2002), 516-547.doi: 10.1006/jfan.2001.3829.

    [2]

    F. Andreu-Vaillo, V. Caselles and J. M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathematics, 223, Birkhäuser Basel, 2004.doi: 10.1007/978-3-0348-7928-6.

    [3]

    J. W. Barrett, X. Feng and A. Prohl, On p-harmonic map heat flows for $1 \leq p<\infty$ and their finite element approximations, SIAM J. Math. Anal., 40 (2008), 1471-1498.doi: 10.1137/070680825.

    [4]

    H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans Les Espaces de Hilbert, North-Holland, Amsterdam, 1973.

    [5]

    R. Dal Passo, L. Giacomelli and S. Moll, Rotationally symmetric 1-harmonic maps from $D^2$ to $S^2$, Calc. Var. PDEs, 32 (2008), 533-554.doi: 10.1007/s00526-007-0153-2.

    [6]

    E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.doi: 10.1007/978-1-4612-0895-2.

    [7]

    X. Feng, Divergence-$L^q$ and divergence-measure tensor fields and gradient flows for linear growth functionals of maps into the unit sphere, Calc. Var. PDEs, 37 (2010), 111-139.doi: 10.1007/s00526-009-0255-0.

    [8]

    L. Giacomelli, J. M. Mazón and S. Moll, The 1-harmonic flow with values into $\mathbbS^1$, SIAM J. Math. Anal., 45 (2013), 1723-1740.doi: 10.1137/12088402X.

    [9]

    L. Giacomelli, J. M. Mazón and S. Moll, The 1-harmonic flow with values in a hyperoctant of the $N$-sphere, Analysis and PDEs, 7 (2014), 627-671.doi: 10.1016/j.aml.2013.05.016.

    [10]

    L. Giacomelli and S. Moll, Rotationally symmetric 1-harmonic flows from $D^2$ to $S^2$: local well-posedness and finite time blowup, SIAM J. Math. Anal., 42 (2010), 2791-2817.doi: 10.1137/090764293.

    [11]

    Y. Giga, Y. Kashima and N. Yamazaki, Local solvability of a constrained gradient system of total variation, Abstr. Appl. Anal., 8 (2004), 651-682.doi: 10.1155/S1085337504311048.

    [12]

    Y. Giga and R. Kobayashi, On constrained equations with singular diffusivity, Methods Appl. Anal., 10 (2003), 253-277.

    [13]

    Y. Giga and R. Kohn, Scale-invariant extinction time estimates for some singular diffusion equations, Discrete Contin. Dyn. Syst., 30 (2011), 509-535.doi: 10.3934/dcds.2011.30.509.

    [14]

    Y. Giga and H. Kuroda, On breakdown of solutions of a constrained gradient system of total variation, Bol. Soc. Parana. Mat., 22 (2004), 9-20.doi: 10.5269/bspm.v22i1.7491.

    [15]

    Y. Giga, H. Kuroda and N. Yamazaki, An existence result for a discretized constrained gradient system of total variation flow in color image processing, Interdiscip. Inform. Sci., 11 (2005), 199-204.doi: 10.4036/iis.2005.199.

    [16]

    Y. Giga, H. Kuroda and N. Yamazaki, Global solvability of constrained singular diffusion equation associated with essential variation, International Series of Numerical Mathematics, 154, Free Boundary Problems: Theory and Applications, Birkhäuser Verlag Basel (2007), 209-218.doi: 10.1007/978-3-7643-7719-9_21.

    [17]

    R. Kobayashi and Y. Giga, Equations with singular diffusivity, J. Stat. Phys., 95 (1999), 1187-1220.doi: 10.1023/A:1004570921372.

    [18]

    Y. Kōmura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19 (1967), 493-507.

    [19]

    B. Tang, G. Sapiro and V. Caselles, Diffusion of general data on non-flat manifolds via harmonic maps theory: The direction diffusion case, Int. J. Computer Vision, 36 (2000), 149-161.

    [20]

    B. Tang, G. Sapiro and V. Caselles, Color image enhancement via chromaticity diffusion, IEEE Transactions on Image Processing, 10 (2001), 701-707.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return