Citation: |
[1] |
F. Andreu, V. Caselles, J. I. Díaz and J. M. Mazón, Some Qualitative properties for the total variation flow, Journal of Functional Analysis, 188 (2) (2002), 516-547.doi: 10.1006/jfan.2001.3829. |
[2] |
F. Andreu-Vaillo, V. Caselles and J. M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathematics, 223, Birkhäuser Basel, 2004.doi: 10.1007/978-3-0348-7928-6. |
[3] |
J. W. Barrett, X. Feng and A. Prohl, On p-harmonic map heat flows for $1 \leq p<\infty$ and their finite element approximations, SIAM J. Math. Anal., 40 (2008), 1471-1498.doi: 10.1137/070680825. |
[4] |
H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans Les Espaces de Hilbert, North-Holland, Amsterdam, 1973. |
[5] |
R. Dal Passo, L. Giacomelli and S. Moll, Rotationally symmetric 1-harmonic maps from $D^2$ to $S^2$, Calc. Var. PDEs, 32 (2008), 533-554.doi: 10.1007/s00526-007-0153-2. |
[6] |
E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.doi: 10.1007/978-1-4612-0895-2. |
[7] |
X. Feng, Divergence-$L^q$ and divergence-measure tensor fields and gradient flows for linear growth functionals of maps into the unit sphere, Calc. Var. PDEs, 37 (2010), 111-139.doi: 10.1007/s00526-009-0255-0. |
[8] |
L. Giacomelli, J. M. Mazón and S. Moll, The 1-harmonic flow with values into $\mathbbS^1$, SIAM J. Math. Anal., 45 (2013), 1723-1740.doi: 10.1137/12088402X. |
[9] |
L. Giacomelli, J. M. Mazón and S. Moll, The 1-harmonic flow with values in a hyperoctant of the $N$-sphere, Analysis and PDEs, 7 (2014), 627-671.doi: 10.1016/j.aml.2013.05.016. |
[10] |
L. Giacomelli and S. Moll, Rotationally symmetric 1-harmonic flows from $D^2$ to $S^2$: local well-posedness and finite time blowup, SIAM J. Math. Anal., 42 (2010), 2791-2817.doi: 10.1137/090764293. |
[11] |
Y. Giga, Y. Kashima and N. Yamazaki, Local solvability of a constrained gradient system of total variation, Abstr. Appl. Anal., 8 (2004), 651-682.doi: 10.1155/S1085337504311048. |
[12] |
Y. Giga and R. Kobayashi, On constrained equations with singular diffusivity, Methods Appl. Anal., 10 (2003), 253-277. |
[13] |
Y. Giga and R. Kohn, Scale-invariant extinction time estimates for some singular diffusion equations, Discrete Contin. Dyn. Syst., 30 (2011), 509-535.doi: 10.3934/dcds.2011.30.509. |
[14] |
Y. Giga and H. Kuroda, On breakdown of solutions of a constrained gradient system of total variation, Bol. Soc. Parana. Mat., 22 (2004), 9-20.doi: 10.5269/bspm.v22i1.7491. |
[15] |
Y. Giga, H. Kuroda and N. Yamazaki, An existence result for a discretized constrained gradient system of total variation flow in color image processing, Interdiscip. Inform. Sci., 11 (2005), 199-204.doi: 10.4036/iis.2005.199. |
[16] |
Y. Giga, H. Kuroda and N. Yamazaki, Global solvability of constrained singular diffusion equation associated with essential variation, International Series of Numerical Mathematics, 154, Free Boundary Problems: Theory and Applications, Birkhäuser Verlag Basel (2007), 209-218.doi: 10.1007/978-3-7643-7719-9_21. |
[17] |
R. Kobayashi and Y. Giga, Equations with singular diffusivity, J. Stat. Phys., 95 (1999), 1187-1220.doi: 10.1023/A:1004570921372. |
[18] |
Y. Kōmura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19 (1967), 493-507. |
[19] |
B. Tang, G. Sapiro and V. Caselles, Diffusion of general data on non-flat manifolds via harmonic maps theory: The direction diffusion case, Int. J. Computer Vision, 36 (2000), 149-161. |
[20] |
B. Tang, G. Sapiro and V. Caselles, Color image enhancement via chromaticity diffusion, IEEE Transactions on Image Processing, 10 (2001), 701-707. |