May  2015, 14(3): 1239-1258. doi: 10.3934/cpaa.2015.14.1239

Spectral asymptotics of the Dirichlet Laplacian in a conical layer

1. 

IRMAR, Univ. Rennes 1, CNRS, Campus de Beaulieu, F-35042 Rennes cedex, France, France

2. 

BCAM - Basque Center for Applied Mathematics, Alameda de Mazarredo, 14 E48009 Bilbao, Basque Country, Spain

Published  March 2015

The spectrum of the Dirichlet Laplacian on conical layers is analysed through two aspects: the infiniteness of the discrete eigenvalues and their expansions in the small aperture limit.

On the one hand, we prove that, for any aperture, the eigenvalues accumulate below the threshold of the essential spectrum: For a small distance from the essential spectrum, the number of eigenvalues farther from the threshold than this distance behaves like the logarithm of the distance.

On the other hand, in the small aperture regime, we provide a two-term asymptotics of the first eigenvalues thanks to a priori localization estimates for the associated eigenfunctions. We prove that these eigenfunctions are localized in the conical cap at a scale of order the cubic root of the aperture angle anthat they get into the other part of the layer at a scale involving the logarithm of the aperture angle.
Citation: Monique Dauge, Thomas Ourmières-Bonafos, Nicolas Raymond. Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1239-1258. doi: 10.3934/cpaa.2015.14.1239
References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables,, Dover Publications, (1966).   Google Scholar

[2]

S. Agmon, Lectures on Exponential Decay of Solutions of Second-order Elliptic Equations: Bounds on Eigenfunctions of $N$-body Schrödinger Operators,, vol. 29 of Mathematical Notes, (1982).   Google Scholar

[3]

S. Agmon, Bounds on exponential decay of eigenfunctions of Schrödinger operators,, in Schrödinger Operators (Como, (1984), 1.  doi: 10.1007/BFb0080331.  Google Scholar

[4]

J. Behrndt, P. Exner and V. Lotoreichik, Schrödinger operators with $\delta$-interactions supported on conical surfaces,, J. Phys. A, (2014).  doi: 10.1088/1751-8113/47/35/355202.  Google Scholar

[5]

C. Bernardi, M. Dauge and Y. Maday, Spectral Methods for Axisymmetric Domains,, vol. 3 of Series in Applied Mathematics (Paris), (1999).   Google Scholar

[6]

M. Born and R. Oppenheimer, Zur quantentheorie der molekeln,, Annalen der Physik, 389 (1927), 457.   Google Scholar

[7]

G. Carron, P. Exner and D. Krejčiřík, Topologically nontrivial quantum layers,, J. Math. Phys., 45 (2004), 774.  doi: 10.1063/1.1635998.  Google Scholar

[8]

J. Combes, P. Duclos and R. Seiler, The born-oppenheimer approximation,, in Rigorous Atomic and Molecular Physics (G. Velo and A. Wightman eds.), (1981), 185.   Google Scholar

[9]

H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry,, Texts and Monographs in Physics, (1987).   Google Scholar

[10]

M. Dauge, Y. Lafranche and N. Raymond, Quantum Waveguides with Corners,, ESAIM: Proceedings, 35 (2012), 14.  doi: 10.1051/proc/201235002.  Google Scholar

[11]

M. Dauge and N. Raymond, Plane waveguides with corners in the small angle limit,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.4769993.  Google Scholar

[12]

M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-classical Limit,, vol. 268 of London Mathematical Society Lecture Note Series, (1999).  doi: 10.1017/CBO9780511662195.  Google Scholar

[13]

P. Duclos and P. Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions,, Rev. Math. Phys., 7 (1995), 73.  doi: 10.1142/S0129055X95000062.  Google Scholar

[14]

P. Duclos, P. Exner, and D. Krejčiřík, Bound states in curved quantum layers,, Comm. Math. Phys., 223 (2001), 13.  doi: 10.1007/PL00005582.  Google Scholar

[15]

P. Exner and P. Šeba, Bound states in curved quantum waveguides,, J. Math. Phys., 30 (1989), 2574.  doi: 10.1063/1.528538.  Google Scholar

[16]

P. Exner and M. Tater, Spectrum of Dirichlet Laplacian in a conical layer,, J. Phys. A, 43 (2010).  doi: 10.1088/1751-8113/43/47/474023.  Google Scholar

[17]

P. Exner, P. Šeba and P. Št'oviček, On existence of a bound state in an L-shaped waveguide,, Czechoslovak Journal of Physics, 39 (1989), 1181.   Google Scholar

[18]

J. Goldstone and R. L. Jaffe, Bound states in twisting tubes,, Phys. Rev. B, 45 (1992), 14100.   Google Scholar

[19]

A. Hassell and S. Marshall, Eigenvalues of Schrödinger operators with potential asymptotically homogeneous of degree -2,, Trans. Am. Math. Soc., 360 (2008), 4145.  doi: 10.1090/S0002-9947-08-04479-6.  Google Scholar

[20]

B. Helffer, Semi-classical Analysis for the Schrödinger Operator and Applications,, vol. 1336 of Lecture Notes in Mathematics, (1336).   Google Scholar

[21]

B. Helffer and J. Sjöstrand, Multiple wells in the semiclassical limit. I,, Comm. Partial Differential Equations, 9 (1984), 337.  doi: 10.1080/03605308408820335.  Google Scholar

[22]

B. Helffer and J. Sjöstrand, Puits multiples en limite semi-classique. II. Interaction moléculaire. Symétries. Perturbation,, Ann. Inst. H. Poincaré Phys. Théor., 42 (1985), 127.   Google Scholar

[23]

T. Jecko, On the mathematical treatment of the Born-Oppenheimer approximation,, J. Math. Phys., 55 (2014).  doi: 10.1063/1.4870855.  Google Scholar

[24]

W. Kirsch and B. Simon, Corrections to the classical behavior of the number of bound states of Schrödinger operators,, Ann. Physics, 183 (1988), 122.  doi: 10.1016/0003-4916(88)90248-5.  Google Scholar

[25]

M. Klein, A. Martinez, R. Seiler and X. P. Wang, On the Born-Oppenheimer expansion for polyatomic molecules,, Comm. Math. Phys., 143 (1992), 607.   Google Scholar

[26]

Y. Lafranche and D. Martin, Mélina++, bibliothèque de calculs éléments finis.,, http://anum-maths.univ-rennes1.fr/melina/, (2012).   Google Scholar

[27]

A. Martinez, Développements asymptotiques et effet tunnel dans l'approximation de Born-Oppenheimer,, Ann. Inst. H. Poincaré Phys. Théor., 50 (1989), 239.   Google Scholar

[28]

A. Martinez, A general effective Hamiltonian method,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 18 (2007), 269.  doi: 10.4171/RLM/494.  Google Scholar

[29]

A. Morame and F. Truc, Remarks on the spectrum of the Neumann problem with magnetic field in the half-space,, J. Math. Phys., 46 (2005).  doi: 10.1063/1.1827922.  Google Scholar

[30]

S. Nazarov and A. Shanin, Trapped modes in angular joints of 2D waveguides,, Appl. Anal., 93 (2014), 572.  doi: 10.1080/00036811.2013.786046.  Google Scholar

[31]

T. Ourmières-Bonafos, Dirichlet eigenvalues of cones in the small aperture limit,, Journal of Spectral Theory, 4 (2014).  doi: 10.4171/JST/77.  Google Scholar

[32]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators,, Academic Press, (1978).   Google Scholar

[33]

B. Simon, Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions,, Ann. Inst. H. Poincaré Sect. A (N.S.), 38 (1983), 295.   Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables,, Dover Publications, (1966).   Google Scholar

[2]

S. Agmon, Lectures on Exponential Decay of Solutions of Second-order Elliptic Equations: Bounds on Eigenfunctions of $N$-body Schrödinger Operators,, vol. 29 of Mathematical Notes, (1982).   Google Scholar

[3]

S. Agmon, Bounds on exponential decay of eigenfunctions of Schrödinger operators,, in Schrödinger Operators (Como, (1984), 1.  doi: 10.1007/BFb0080331.  Google Scholar

[4]

J. Behrndt, P. Exner and V. Lotoreichik, Schrödinger operators with $\delta$-interactions supported on conical surfaces,, J. Phys. A, (2014).  doi: 10.1088/1751-8113/47/35/355202.  Google Scholar

[5]

C. Bernardi, M. Dauge and Y. Maday, Spectral Methods for Axisymmetric Domains,, vol. 3 of Series in Applied Mathematics (Paris), (1999).   Google Scholar

[6]

M. Born and R. Oppenheimer, Zur quantentheorie der molekeln,, Annalen der Physik, 389 (1927), 457.   Google Scholar

[7]

G. Carron, P. Exner and D. Krejčiřík, Topologically nontrivial quantum layers,, J. Math. Phys., 45 (2004), 774.  doi: 10.1063/1.1635998.  Google Scholar

[8]

J. Combes, P. Duclos and R. Seiler, The born-oppenheimer approximation,, in Rigorous Atomic and Molecular Physics (G. Velo and A. Wightman eds.), (1981), 185.   Google Scholar

[9]

H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry,, Texts and Monographs in Physics, (1987).   Google Scholar

[10]

M. Dauge, Y. Lafranche and N. Raymond, Quantum Waveguides with Corners,, ESAIM: Proceedings, 35 (2012), 14.  doi: 10.1051/proc/201235002.  Google Scholar

[11]

M. Dauge and N. Raymond, Plane waveguides with corners in the small angle limit,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.4769993.  Google Scholar

[12]

M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-classical Limit,, vol. 268 of London Mathematical Society Lecture Note Series, (1999).  doi: 10.1017/CBO9780511662195.  Google Scholar

[13]

P. Duclos and P. Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions,, Rev. Math. Phys., 7 (1995), 73.  doi: 10.1142/S0129055X95000062.  Google Scholar

[14]

P. Duclos, P. Exner, and D. Krejčiřík, Bound states in curved quantum layers,, Comm. Math. Phys., 223 (2001), 13.  doi: 10.1007/PL00005582.  Google Scholar

[15]

P. Exner and P. Šeba, Bound states in curved quantum waveguides,, J. Math. Phys., 30 (1989), 2574.  doi: 10.1063/1.528538.  Google Scholar

[16]

P. Exner and M. Tater, Spectrum of Dirichlet Laplacian in a conical layer,, J. Phys. A, 43 (2010).  doi: 10.1088/1751-8113/43/47/474023.  Google Scholar

[17]

P. Exner, P. Šeba and P. Št'oviček, On existence of a bound state in an L-shaped waveguide,, Czechoslovak Journal of Physics, 39 (1989), 1181.   Google Scholar

[18]

J. Goldstone and R. L. Jaffe, Bound states in twisting tubes,, Phys. Rev. B, 45 (1992), 14100.   Google Scholar

[19]

A. Hassell and S. Marshall, Eigenvalues of Schrödinger operators with potential asymptotically homogeneous of degree -2,, Trans. Am. Math. Soc., 360 (2008), 4145.  doi: 10.1090/S0002-9947-08-04479-6.  Google Scholar

[20]

B. Helffer, Semi-classical Analysis for the Schrödinger Operator and Applications,, vol. 1336 of Lecture Notes in Mathematics, (1336).   Google Scholar

[21]

B. Helffer and J. Sjöstrand, Multiple wells in the semiclassical limit. I,, Comm. Partial Differential Equations, 9 (1984), 337.  doi: 10.1080/03605308408820335.  Google Scholar

[22]

B. Helffer and J. Sjöstrand, Puits multiples en limite semi-classique. II. Interaction moléculaire. Symétries. Perturbation,, Ann. Inst. H. Poincaré Phys. Théor., 42 (1985), 127.   Google Scholar

[23]

T. Jecko, On the mathematical treatment of the Born-Oppenheimer approximation,, J. Math. Phys., 55 (2014).  doi: 10.1063/1.4870855.  Google Scholar

[24]

W. Kirsch and B. Simon, Corrections to the classical behavior of the number of bound states of Schrödinger operators,, Ann. Physics, 183 (1988), 122.  doi: 10.1016/0003-4916(88)90248-5.  Google Scholar

[25]

M. Klein, A. Martinez, R. Seiler and X. P. Wang, On the Born-Oppenheimer expansion for polyatomic molecules,, Comm. Math. Phys., 143 (1992), 607.   Google Scholar

[26]

Y. Lafranche and D. Martin, Mélina++, bibliothèque de calculs éléments finis.,, http://anum-maths.univ-rennes1.fr/melina/, (2012).   Google Scholar

[27]

A. Martinez, Développements asymptotiques et effet tunnel dans l'approximation de Born-Oppenheimer,, Ann. Inst. H. Poincaré Phys. Théor., 50 (1989), 239.   Google Scholar

[28]

A. Martinez, A general effective Hamiltonian method,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 18 (2007), 269.  doi: 10.4171/RLM/494.  Google Scholar

[29]

A. Morame and F. Truc, Remarks on the spectrum of the Neumann problem with magnetic field in the half-space,, J. Math. Phys., 46 (2005).  doi: 10.1063/1.1827922.  Google Scholar

[30]

S. Nazarov and A. Shanin, Trapped modes in angular joints of 2D waveguides,, Appl. Anal., 93 (2014), 572.  doi: 10.1080/00036811.2013.786046.  Google Scholar

[31]

T. Ourmières-Bonafos, Dirichlet eigenvalues of cones in the small aperture limit,, Journal of Spectral Theory, 4 (2014).  doi: 10.4171/JST/77.  Google Scholar

[32]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators,, Academic Press, (1978).   Google Scholar

[33]

B. Simon, Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions,, Ann. Inst. H. Poincaré Sect. A (N.S.), 38 (1983), 295.   Google Scholar

[1]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[2]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[3]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[6]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[9]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[10]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[11]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[12]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (10)

[Back to Top]