July  2015, 14(4): 1259-1274. doi: 10.3934/cpaa.2015.14.1259

A remark on the well-posedness of a degenerated Zakharov system

1. 

Universidade Federal da Bahia, Instituto de Matemática, Av. Adhemar de Barros , Ondina, 40170-110, Salvador, Bahia, Brazil

2. 

IMPA, Estrada Dona Castorina 110, Rio de Janeiro, 22460-320

Received  September 2013 Revised  March 2014 Published  April 2015

We extend the local well-posedness theory for the Cauchy problem associated to a degenerated Zakharov system. The new main ingredients are the derivation of Strichartz and maximal function norm estimates for the linear solution of a Schrödinger type equation with missing dispersion in one direction. The result here improves the one in [10].
Citation: Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259
References:
[1]

I. Bejenaru, S. Herr, J. Holmer, and D. Tataru, On the 2D Zakharov system with $L^2$ Schrödinger data,, \emph{Nonlinearity}, 22 (2009), 1063.  doi: 10.1088/0951-7715/22/5/007.  Google Scholar

[2]

M. Colin and M. Colin, On a quasilinear Zakharov system describing laser-plasma interactions,, \emph{Differential Integral Equations}, 17 (2004), 297.   Google Scholar

[3]

T. Colin and G. Métivier, Instabilities in Zakharov equations for lazer propagation in a plasma, Phase space analysis of partial differential equations,, \emph{Progr. Nonlinear Differential Equations Appl.}, 69 (2006), 297.  doi: 10.1007/978-0-8176-4521-2_6.  Google Scholar

[4]

A. V. Faminskii, The Cauchy problem for the Zakharov-Kuznetsov equation,, \emph{Differential Equations}, 31 (1995), 1002.   Google Scholar

[5]

J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system,, \emph{J. Funct. Anal.}, 151 (1997), 384.  doi: 10.1006/jfan.1997.3148.  Google Scholar

[6]

C. E. Kenig and S. N. Ziesler, Maximal function estimate with aplications to a modified Kadomtsev-Petviashvili equation,, \emph{Comm. Pure Appl. Anal.}, 4 (2005), 45.  doi: 10.3934/cpaa.2005.4.45.  Google Scholar

[7]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, \emph{Comm. Pure Appl. Math.}, 46 (1993), 527.  doi: 10.1002/cpa.3160460405.  Google Scholar

[8]

C. E. Kenig, G. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equations,, \emph{Ann. Inst. Henri Poincar\'e}, 10 (1993), 255.   Google Scholar

[9]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equation,, Springer, (2009).   Google Scholar

[10]

F. Linares, G. Ponce and J. C. Saut, On a degenerate Zakharov System,, \emph{Bull. Braz. Math. Soc.}, 36 (2005), 1.  doi: 10.1007/s00574-005-0025-3.  Google Scholar

[11]

T. Ozawa and Y. Tsutsumi, Existence and smoothing effect of solutions for the Zakharov equations,, \emph{Publ. Res. Inst. Math. Sci.}, 28 (1992), 329.  doi: 10.2977/prims/1195168430.  Google Scholar

[12]

G. Riazuelo, Etude théorique et numérique de l'influence du lissage optique sur la filamentation des faisceaux lasers dans les plasmas sous-critiques de fusion inertielle,, Th\`ese de l'Universit\'e Paris XI., ().   Google Scholar

[13]

V. E. Zakharov, Collapse of Langmuir Waves,, \emph{Sov. Phys. JETP}, 35 (1972), 908.   Google Scholar

show all references

References:
[1]

I. Bejenaru, S. Herr, J. Holmer, and D. Tataru, On the 2D Zakharov system with $L^2$ Schrödinger data,, \emph{Nonlinearity}, 22 (2009), 1063.  doi: 10.1088/0951-7715/22/5/007.  Google Scholar

[2]

M. Colin and M. Colin, On a quasilinear Zakharov system describing laser-plasma interactions,, \emph{Differential Integral Equations}, 17 (2004), 297.   Google Scholar

[3]

T. Colin and G. Métivier, Instabilities in Zakharov equations for lazer propagation in a plasma, Phase space analysis of partial differential equations,, \emph{Progr. Nonlinear Differential Equations Appl.}, 69 (2006), 297.  doi: 10.1007/978-0-8176-4521-2_6.  Google Scholar

[4]

A. V. Faminskii, The Cauchy problem for the Zakharov-Kuznetsov equation,, \emph{Differential Equations}, 31 (1995), 1002.   Google Scholar

[5]

J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system,, \emph{J. Funct. Anal.}, 151 (1997), 384.  doi: 10.1006/jfan.1997.3148.  Google Scholar

[6]

C. E. Kenig and S. N. Ziesler, Maximal function estimate with aplications to a modified Kadomtsev-Petviashvili equation,, \emph{Comm. Pure Appl. Anal.}, 4 (2005), 45.  doi: 10.3934/cpaa.2005.4.45.  Google Scholar

[7]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, \emph{Comm. Pure Appl. Math.}, 46 (1993), 527.  doi: 10.1002/cpa.3160460405.  Google Scholar

[8]

C. E. Kenig, G. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equations,, \emph{Ann. Inst. Henri Poincar\'e}, 10 (1993), 255.   Google Scholar

[9]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equation,, Springer, (2009).   Google Scholar

[10]

F. Linares, G. Ponce and J. C. Saut, On a degenerate Zakharov System,, \emph{Bull. Braz. Math. Soc.}, 36 (2005), 1.  doi: 10.1007/s00574-005-0025-3.  Google Scholar

[11]

T. Ozawa and Y. Tsutsumi, Existence and smoothing effect of solutions for the Zakharov equations,, \emph{Publ. Res. Inst. Math. Sci.}, 28 (1992), 329.  doi: 10.2977/prims/1195168430.  Google Scholar

[12]

G. Riazuelo, Etude théorique et numérique de l'influence du lissage optique sur la filamentation des faisceaux lasers dans les plasmas sous-critiques de fusion inertielle,, Th\`ese de l'Universit\'e Paris XI., ().   Google Scholar

[13]

V. E. Zakharov, Collapse of Langmuir Waves,, \emph{Sov. Phys. JETP}, 35 (1972), 908.   Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[5]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[8]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[9]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[10]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[13]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[14]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[15]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[16]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[19]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[20]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]