-
Previous Article
Remarks on the comparison principle for quasilinear PDE with no zeroth order terms
- CPAA Home
- This Issue
-
Next Article
A counterexample to finite time stopping property for one-harmonic map flow
Phragmén--Lindelöf theorem for infinity harmonic functions
1. | University of Helsinki, Department of Mathematics and Statistics, P.O. Box 68, FI-00014 University of Helsinki, Finland, Finland |
References:
[1] |
G. Aronsson, On the partial differential equation $u_x^{2}u_{xx} +2u_xu_yu_{xy}+u_y^{2}u_{yy}=0$, Ark. Mat., 7 (1968), 395-425. |
[2] |
G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 439-505.
doi: 10.1090/S0273-0979-04-01035-3. |
[3] |
T. Bhattacharya, On the behaviour of $\infty$-harmonic functions on some special unbounded domains, Pacific J. Math., 219 (2005), 237-253.
doi: 10.2140/pjm.2005.219.237. |
[4] |
T. Bhattacharya, A note on non-negative singular infinity-harmonic functions in the half-space, Rev. Mat. Complut., 18 (2005), 377-385. |
[5] |
T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as $p\to\infty$ of $\Delta_pu_p=f$ and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino, (1989), 15-68. |
[6] |
I. Capuzzo Dolcetta and A. Vitolo, A qualitative Phragmén-Lindelöf theorem for fully nonlinear elliptic equations, J. Differential Equations, 243 (2007), 578-592.
doi: 10.1016/j.jde.2007.08.001. |
[7] |
S. Granlund, P. Lindqvist and O. Martio, Phragmén-Lindelöf's and Lindelöf's theorems, Ark. Mat., 23 (1985), 103-128.
doi: 10.1007/BF02384420. |
[8] |
R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.
doi: 10.1007/BF00386368. |
[9] |
Z. Jin and K. Lancaster, Theorems of Phragmén-Lindelöf type for quasilinear elliptic equations, J. Reine Angew. Math., 514 (1999), 165-197.
doi: 10.1515/crll.1999.070. |
[10] |
P. Lindqvist, On the growth of the solutions of the differential equation div$(|\nabla u|^{p-2}\nabla u)=0$ in $n$-dimensional space, J. Differential Equations, 58 (1985), 307-317.
doi: 10.1016/0022-0396(85)90002-6. |
[11] |
P. Lindqvist and J. Manfredi, The Harnack inequality for $\infty$-harmonic functions, Electron. J. Differential Equations, 4 (1995), 1-5. |
[12] |
E. Phragmén and E. Lindelöf, Sur une extension d'un principe classique de l'analyse et sur quelques propriétés des fonctions monogénes dans le voisinage d'un point singulier, Acta Math., 31 (1908), 381-406.
doi: 10.1007/BF02415450. |
show all references
References:
[1] |
G. Aronsson, On the partial differential equation $u_x^{2}u_{xx} +2u_xu_yu_{xy}+u_y^{2}u_{yy}=0$, Ark. Mat., 7 (1968), 395-425. |
[2] |
G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 439-505.
doi: 10.1090/S0273-0979-04-01035-3. |
[3] |
T. Bhattacharya, On the behaviour of $\infty$-harmonic functions on some special unbounded domains, Pacific J. Math., 219 (2005), 237-253.
doi: 10.2140/pjm.2005.219.237. |
[4] |
T. Bhattacharya, A note on non-negative singular infinity-harmonic functions in the half-space, Rev. Mat. Complut., 18 (2005), 377-385. |
[5] |
T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as $p\to\infty$ of $\Delta_pu_p=f$ and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino, (1989), 15-68. |
[6] |
I. Capuzzo Dolcetta and A. Vitolo, A qualitative Phragmén-Lindelöf theorem for fully nonlinear elliptic equations, J. Differential Equations, 243 (2007), 578-592.
doi: 10.1016/j.jde.2007.08.001. |
[7] |
S. Granlund, P. Lindqvist and O. Martio, Phragmén-Lindelöf's and Lindelöf's theorems, Ark. Mat., 23 (1985), 103-128.
doi: 10.1007/BF02384420. |
[8] |
R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.
doi: 10.1007/BF00386368. |
[9] |
Z. Jin and K. Lancaster, Theorems of Phragmén-Lindelöf type for quasilinear elliptic equations, J. Reine Angew. Math., 514 (1999), 165-197.
doi: 10.1515/crll.1999.070. |
[10] |
P. Lindqvist, On the growth of the solutions of the differential equation div$(|\nabla u|^{p-2}\nabla u)=0$ in $n$-dimensional space, J. Differential Equations, 58 (1985), 307-317.
doi: 10.1016/0022-0396(85)90002-6. |
[11] |
P. Lindqvist and J. Manfredi, The Harnack inequality for $\infty$-harmonic functions, Electron. J. Differential Equations, 4 (1995), 1-5. |
[12] |
E. Phragmén and E. Lindelöf, Sur une extension d'un principe classique de l'analyse et sur quelques propriétés des fonctions monogénes dans le voisinage d'un point singulier, Acta Math., 31 (1908), 381-406.
doi: 10.1007/BF02415450. |
[1] |
M. Carme Leseduarte, Ramon Quintanilla. Phragmén-Lindelöf alternative for an exact heat conduction equation with delay. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1221-1235. doi: 10.3934/cpaa.2013.12.1221 |
[2] |
Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683 |
[3] |
Shenzhou Zheng, Laping Zhang, Zhaosheng Feng. Everywhere regularity for P-harmonic type systems under the subcritical growth. Communications on Pure and Applied Analysis, 2008, 7 (1) : 107-117. doi: 10.3934/cpaa.2008.7.107 |
[4] |
Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175 |
[5] |
L. F. Cheung, C. K. Law, M. C. Leung. On a class of rotationally symmetric $p$-harmonic maps. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1941-1955. doi: 10.3934/cpaa.2017095 |
[6] |
Kerstin Does. An evolution equation involving the normalized $P$-Laplacian. Communications on Pure and Applied Analysis, 2011, 10 (1) : 361-396. doi: 10.3934/cpaa.2011.10.361 |
[7] |
Manas Kar, Jenn-Nan Wang. Size estimates for the weighted p-Laplace equation with one measurement. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2011-2024. doi: 10.3934/dcdsb.2020188 |
[8] |
Raf Cluckers, Julia Gordon, Immanuel Halupczok. Motivic functions, integrability, and applications to harmonic analysis on $p$-adic groups. Electronic Research Announcements, 2014, 21: 137-152. doi: 10.3934/era.2014.21.137 |
[9] |
Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779 |
[10] |
Arrigo Cellina. The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4071-4085. doi: 10.3934/dcds.2018177 |
[11] |
Jan Burczak, P. Kaplický. Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2401-2445. doi: 10.3934/cpaa.2016042 |
[12] |
Fabio Punzo. Phragmèn-Lindelöf principles for fully nonlinear elliptic equations with unbounded coefficients. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1439-1461. doi: 10.3934/cpaa.2010.9.1439 |
[13] |
Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033 |
[14] |
Michael Filippakis, Alexandru Kristály, Nikolaos S. Papageorgiou. Existence of five nonzero solutions with exact sign for a $p$-Laplacian equation. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 405-440. doi: 10.3934/dcds.2009.24.405 |
[15] |
Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure and Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735 |
[16] |
Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107 |
[17] |
Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361 |
[18] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations and Control Theory, 2022, 11 (2) : 399-414. doi: 10.3934/eect.2021005 |
[19] |
Shun Uchida. Solvability of doubly nonlinear parabolic equation with p-laplacian. Evolution Equations and Control Theory, 2022, 11 (3) : 975-1000. doi: 10.3934/eect.2021033 |
[20] |
Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]