January  2015, 14(1): 127-132. doi: 10.3934/cpaa.2015.14.127

Phragmén--Lindelöf theorem for infinity harmonic functions

1. 

University of Helsinki, Department of Mathematics and Statistics, P.O. Box 68, FI-00014 University of Helsinki, Finland, Finland

Received  October 2013 Revised  January 2014 Published  September 2014

We investigate a version of the Phragmén--Lindelöf theorem for solutions of the equation $\Delta_\infty u=0$ in unbounded convex domains. The method of proof is to consider this infinity harmonic equation as the limit of the $p$-harmonic equation when $p$ tends to $\infty$.
Citation: Seppo Granlund, Niko Marola. Phragmén--Lindelöf theorem for infinity harmonic functions. Communications on Pure & Applied Analysis, 2015, 14 (1) : 127-132. doi: 10.3934/cpaa.2015.14.127
References:
[1]

G. Aronsson, On the partial differential equation $u_x^{2}u_{xx} +2u_xu_yu_{xy}+u_y^{2}u_{yy}=0$,, \emph{Ark. Mat.}, 7 (1968), 395.   Google Scholar

[2]

G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 41 (2004), 439.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[3]

T. Bhattacharya, On the behaviour of $\infty$-harmonic functions on some special unbounded domains,, \emph{Pacific J. Math.}, 219 (2005), 237.  doi: 10.2140/pjm.2005.219.237.  Google Scholar

[4]

T. Bhattacharya, A note on non-negative singular infinity-harmonic functions in the half-space,, \emph{Rev. Mat. Complut.}, 18 (2005), 377.   Google Scholar

[5]

T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as $p\to\infty$ of $\Delta_pu_p=f$ and related extremal problems,, \emph{Rend. Sem. Mat. Univ. Politec. Torino}, (1989), 15.   Google Scholar

[6]

I. Capuzzo Dolcetta and A. Vitolo, A qualitative Phragmén-Lindelöf theorem for fully nonlinear elliptic equations,, \emph{J. Differential Equations}, 243 (2007), 578.  doi: 10.1016/j.jde.2007.08.001.  Google Scholar

[7]

S. Granlund, P. Lindqvist and O. Martio, Phragmén-Lindelöf's and Lindelöf's theorems,, \emph{Ark. Mat.}, 23 (1985), 103.  doi: 10.1007/BF02384420.  Google Scholar

[8]

R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient,, \emph{Arch. Rational Mech. Anal.}, 123 (1993), 51.  doi: 10.1007/BF00386368.  Google Scholar

[9]

Z. Jin and K. Lancaster, Theorems of Phragmén-Lindelöf type for quasilinear elliptic equations,, \emph{J. Reine Angew. Math.}, 514 (1999), 165.  doi: 10.1515/crll.1999.070.  Google Scholar

[10]

P. Lindqvist, On the growth of the solutions of the differential equation div$(|\nabla u|^{p-2}\nabla u)=0$ in $n$-dimensional space,, \emph{J. Differential Equations}, 58 (1985), 307.  doi: 10.1016/0022-0396(85)90002-6.  Google Scholar

[11]

P. Lindqvist and J. Manfredi, The Harnack inequality for $\infty$-harmonic functions,, \emph{Electron. J. Differential Equations}, 4 (1995), 1.   Google Scholar

[12]

E. Phragmén and E. Lindelöf, Sur une extension d'un principe classique de l'analyse et sur quelques propriétés des fonctions monogénes dans le voisinage d'un point singulier,, \emph{Acta Math.}, 31 (1908), 381.  doi: 10.1007/BF02415450.  Google Scholar

show all references

References:
[1]

G. Aronsson, On the partial differential equation $u_x^{2}u_{xx} +2u_xu_yu_{xy}+u_y^{2}u_{yy}=0$,, \emph{Ark. Mat.}, 7 (1968), 395.   Google Scholar

[2]

G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 41 (2004), 439.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[3]

T. Bhattacharya, On the behaviour of $\infty$-harmonic functions on some special unbounded domains,, \emph{Pacific J. Math.}, 219 (2005), 237.  doi: 10.2140/pjm.2005.219.237.  Google Scholar

[4]

T. Bhattacharya, A note on non-negative singular infinity-harmonic functions in the half-space,, \emph{Rev. Mat. Complut.}, 18 (2005), 377.   Google Scholar

[5]

T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as $p\to\infty$ of $\Delta_pu_p=f$ and related extremal problems,, \emph{Rend. Sem. Mat. Univ. Politec. Torino}, (1989), 15.   Google Scholar

[6]

I. Capuzzo Dolcetta and A. Vitolo, A qualitative Phragmén-Lindelöf theorem for fully nonlinear elliptic equations,, \emph{J. Differential Equations}, 243 (2007), 578.  doi: 10.1016/j.jde.2007.08.001.  Google Scholar

[7]

S. Granlund, P. Lindqvist and O. Martio, Phragmén-Lindelöf's and Lindelöf's theorems,, \emph{Ark. Mat.}, 23 (1985), 103.  doi: 10.1007/BF02384420.  Google Scholar

[8]

R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient,, \emph{Arch. Rational Mech. Anal.}, 123 (1993), 51.  doi: 10.1007/BF00386368.  Google Scholar

[9]

Z. Jin and K. Lancaster, Theorems of Phragmén-Lindelöf type for quasilinear elliptic equations,, \emph{J. Reine Angew. Math.}, 514 (1999), 165.  doi: 10.1515/crll.1999.070.  Google Scholar

[10]

P. Lindqvist, On the growth of the solutions of the differential equation div$(|\nabla u|^{p-2}\nabla u)=0$ in $n$-dimensional space,, \emph{J. Differential Equations}, 58 (1985), 307.  doi: 10.1016/0022-0396(85)90002-6.  Google Scholar

[11]

P. Lindqvist and J. Manfredi, The Harnack inequality for $\infty$-harmonic functions,, \emph{Electron. J. Differential Equations}, 4 (1995), 1.   Google Scholar

[12]

E. Phragmén and E. Lindelöf, Sur une extension d'un principe classique de l'analyse et sur quelques propriétés des fonctions monogénes dans le voisinage d'un point singulier,, \emph{Acta Math.}, 31 (1908), 381.  doi: 10.1007/BF02415450.  Google Scholar

[1]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[4]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[5]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[6]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[9]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[10]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[11]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[12]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[13]

Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020222

[14]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[15]

Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374

[16]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[17]

Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2021, 15 (1) : 55-64. doi: 10.3934/amc.2020042

[18]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[20]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]