January  2015, 14(1): 127-132. doi: 10.3934/cpaa.2015.14.127

Phragmén--Lindelöf theorem for infinity harmonic functions

1. 

University of Helsinki, Department of Mathematics and Statistics, P.O. Box 68, FI-00014 University of Helsinki, Finland, Finland

Received  October 2013 Revised  January 2014 Published  September 2014

We investigate a version of the Phragmén--Lindelöf theorem for solutions of the equation $\Delta_\infty u=0$ in unbounded convex domains. The method of proof is to consider this infinity harmonic equation as the limit of the $p$-harmonic equation when $p$ tends to $\infty$.
Citation: Seppo Granlund, Niko Marola. Phragmén--Lindelöf theorem for infinity harmonic functions. Communications on Pure & Applied Analysis, 2015, 14 (1) : 127-132. doi: 10.3934/cpaa.2015.14.127
References:
[1]

G. Aronsson, On the partial differential equation $u_x^{2}u_{xx} +2u_xu_yu_{xy}+u_y^{2}u_{yy}=0$,, \emph{Ark. Mat.}, 7 (1968), 395.   Google Scholar

[2]

G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 41 (2004), 439.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[3]

T. Bhattacharya, On the behaviour of $\infty$-harmonic functions on some special unbounded domains,, \emph{Pacific J. Math.}, 219 (2005), 237.  doi: 10.2140/pjm.2005.219.237.  Google Scholar

[4]

T. Bhattacharya, A note on non-negative singular infinity-harmonic functions in the half-space,, \emph{Rev. Mat. Complut.}, 18 (2005), 377.   Google Scholar

[5]

T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as $p\to\infty$ of $\Delta_pu_p=f$ and related extremal problems,, \emph{Rend. Sem. Mat. Univ. Politec. Torino}, (1989), 15.   Google Scholar

[6]

I. Capuzzo Dolcetta and A. Vitolo, A qualitative Phragmén-Lindelöf theorem for fully nonlinear elliptic equations,, \emph{J. Differential Equations}, 243 (2007), 578.  doi: 10.1016/j.jde.2007.08.001.  Google Scholar

[7]

S. Granlund, P. Lindqvist and O. Martio, Phragmén-Lindelöf's and Lindelöf's theorems,, \emph{Ark. Mat.}, 23 (1985), 103.  doi: 10.1007/BF02384420.  Google Scholar

[8]

R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient,, \emph{Arch. Rational Mech. Anal.}, 123 (1993), 51.  doi: 10.1007/BF00386368.  Google Scholar

[9]

Z. Jin and K. Lancaster, Theorems of Phragmén-Lindelöf type for quasilinear elliptic equations,, \emph{J. Reine Angew. Math.}, 514 (1999), 165.  doi: 10.1515/crll.1999.070.  Google Scholar

[10]

P. Lindqvist, On the growth of the solutions of the differential equation div$(|\nabla u|^{p-2}\nabla u)=0$ in $n$-dimensional space,, \emph{J. Differential Equations}, 58 (1985), 307.  doi: 10.1016/0022-0396(85)90002-6.  Google Scholar

[11]

P. Lindqvist and J. Manfredi, The Harnack inequality for $\infty$-harmonic functions,, \emph{Electron. J. Differential Equations}, 4 (1995), 1.   Google Scholar

[12]

E. Phragmén and E. Lindelöf, Sur une extension d'un principe classique de l'analyse et sur quelques propriétés des fonctions monogénes dans le voisinage d'un point singulier,, \emph{Acta Math.}, 31 (1908), 381.  doi: 10.1007/BF02415450.  Google Scholar

show all references

References:
[1]

G. Aronsson, On the partial differential equation $u_x^{2}u_{xx} +2u_xu_yu_{xy}+u_y^{2}u_{yy}=0$,, \emph{Ark. Mat.}, 7 (1968), 395.   Google Scholar

[2]

G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 41 (2004), 439.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[3]

T. Bhattacharya, On the behaviour of $\infty$-harmonic functions on some special unbounded domains,, \emph{Pacific J. Math.}, 219 (2005), 237.  doi: 10.2140/pjm.2005.219.237.  Google Scholar

[4]

T. Bhattacharya, A note on non-negative singular infinity-harmonic functions in the half-space,, \emph{Rev. Mat. Complut.}, 18 (2005), 377.   Google Scholar

[5]

T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as $p\to\infty$ of $\Delta_pu_p=f$ and related extremal problems,, \emph{Rend. Sem. Mat. Univ. Politec. Torino}, (1989), 15.   Google Scholar

[6]

I. Capuzzo Dolcetta and A. Vitolo, A qualitative Phragmén-Lindelöf theorem for fully nonlinear elliptic equations,, \emph{J. Differential Equations}, 243 (2007), 578.  doi: 10.1016/j.jde.2007.08.001.  Google Scholar

[7]

S. Granlund, P. Lindqvist and O. Martio, Phragmén-Lindelöf's and Lindelöf's theorems,, \emph{Ark. Mat.}, 23 (1985), 103.  doi: 10.1007/BF02384420.  Google Scholar

[8]

R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient,, \emph{Arch. Rational Mech. Anal.}, 123 (1993), 51.  doi: 10.1007/BF00386368.  Google Scholar

[9]

Z. Jin and K. Lancaster, Theorems of Phragmén-Lindelöf type for quasilinear elliptic equations,, \emph{J. Reine Angew. Math.}, 514 (1999), 165.  doi: 10.1515/crll.1999.070.  Google Scholar

[10]

P. Lindqvist, On the growth of the solutions of the differential equation div$(|\nabla u|^{p-2}\nabla u)=0$ in $n$-dimensional space,, \emph{J. Differential Equations}, 58 (1985), 307.  doi: 10.1016/0022-0396(85)90002-6.  Google Scholar

[11]

P. Lindqvist and J. Manfredi, The Harnack inequality for $\infty$-harmonic functions,, \emph{Electron. J. Differential Equations}, 4 (1995), 1.   Google Scholar

[12]

E. Phragmén and E. Lindelöf, Sur une extension d'un principe classique de l'analyse et sur quelques propriétés des fonctions monogénes dans le voisinage d'un point singulier,, \emph{Acta Math.}, 31 (1908), 381.  doi: 10.1007/BF02415450.  Google Scholar

[1]

Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683

[2]

M. Carme Leseduarte, Ramon Quintanilla. Phragmén-Lindelöf alternative for an exact heat conduction equation with delay. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1221-1235. doi: 10.3934/cpaa.2013.12.1221

[3]

Shenzhou Zheng, Laping Zhang, Zhaosheng Feng. Everywhere regularity for P-harmonic type systems under the subcritical growth. Communications on Pure & Applied Analysis, 2008, 7 (1) : 107-117. doi: 10.3934/cpaa.2008.7.107

[4]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[5]

L. F. Cheung, C. K. Law, M. C. Leung. On a class of rotationally symmetric $p$-harmonic maps. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1941-1955. doi: 10.3934/cpaa.2017095

[6]

Kerstin Does. An evolution equation involving the normalized $P$-Laplacian. Communications on Pure & Applied Analysis, 2011, 10 (1) : 361-396. doi: 10.3934/cpaa.2011.10.361

[7]

Arrigo Cellina. The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4071-4085. doi: 10.3934/dcds.2018177

[8]

Raf Cluckers, Julia Gordon, Immanuel Halupczok. Motivic functions, integrability, and applications to harmonic analysis on $p$-adic groups. Electronic Research Announcements, 2014, 21: 137-152. doi: 10.3934/era.2014.21.137

[9]

Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779

[10]

Jan Burczak, P. Kaplický. Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2401-2445. doi: 10.3934/cpaa.2016042

[11]

Fabio Punzo. Phragmèn-Lindelöf principles for fully nonlinear elliptic equations with unbounded coefficients. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1439-1461. doi: 10.3934/cpaa.2010.9.1439

[12]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[13]

Michael Filippakis, Alexandru Kristály, Nikolaos S. Papageorgiou. Existence of five nonzero solutions with exact sign for a $p$-Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 405-440. doi: 10.3934/dcds.2009.24.405

[14]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure & Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[15]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[16]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[17]

Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559

[18]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

[19]

Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715

[20]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]