• Previous Article
    On a system of semirelativistic equations in the energy space
  • CPAA Home
  • This Issue
  • Next Article
    Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations
July  2015, 14(4): 1327-1341. doi: 10.3934/cpaa.2015.14.1327

Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces

1. 

Universidad Nacional de Colombia, Bogotá, Colombia, Colombia, Colombia

Received  May 2013 Revised  September 2013 Published  April 2015

We consider the initial value problem associated to the regularized Benjamin-Ono equation, rBO. Our aim is to establish local and global well-posedness results in weighted Sobolev spaces via contraction principle. We also prove a unique continuation property that implies that arbitrary polynomial type decay is not preserved yielding sharp results regarding well-posedness of the initial value problem in most weighted Sobolev spaces.
Citation: G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327
References:
[1]

J. Angulo, M. Scialom and C. Banquet, The regularized Benjamin-Ono and BBM equations: Well-posedness and nonlinear stability,, \emph{J. Diff. Eqs.}, 250 (2011), 4011.  doi: 10.1016/j.jde.2010.12.016.  Google Scholar

[2]

J. P. Albert and J. L. Bona, Comparisons between model equations for long waves,, \emph{J. Nonlinear Sci.}, 1 (1991), 345.  doi: 10.1007/BF01238818.  Google Scholar

[3]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth,, \emph{J. Fluid Mech.}, 29 (1967), 559.   Google Scholar

[4]

J. Bona and H. Kalisch, Models for internal waves in deep water,, \emph{Discrete Contin. Dyn. Syst.}, 6 (2000), 1.  doi: 10.3934/dcds.2000.6.1.  Google Scholar

[5]

H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations,, \emph{Nonlinear Anal. TMA.}, 4 (1980), 677.  doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[6]

J. Duoandikoetxea, Fourier Analysis,, Grad. Studies in Math., 29 (2001).   Google Scholar

[7]

L. Escauriaza, C. E. Kenig, G. Ponce and L. Vega, On uniqueness properties of solutions of the k-generalized KdV equations,, \emph{J. Funct. Anal.}, 244 (2007), 504.  doi: 10.1016/j.jfa.2006.11.004.  Google Scholar

[8]

L. Escauriaza, C. E. Kenig, G. Ponce and L. Vega, The sharp hardy uncertainty principle for Schrödinger evolutions,, \emph{Duke Math. J.}, 155 (2010), 163.  doi: 10.1215/00127094-2010-053.  Google Scholar

[9]

G. Fonseca and G. Ponce, The I.V.P for the Benjamin-Ono equation in weighted Sobolev spaces,, \emph{J. Funct. Anal.}, 260 (2011), 436.  doi: 10.1016/j.jfa.2010.09.010.  Google Scholar

[10]

G. Fonseca, F. Linares and G. Ponce, The I.V.P for the Benjamin-Ono equation in weighted Sobolev spaces II,, \emph{J. Funct. Anal.}, 262 (2012), 2031.  doi: 10.1016/j.jfa.2011.12.017.  Google Scholar

[11]

G. Fonseca, F. Linares and G. Ponce, The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces,, \emph{Ann. I. H. Poincar\'e-AN}, 30 (2013), 763.  doi: 10.1016/j.anihpc.2012.06.006.  Google Scholar

[12]

R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform,, \emph{Trans. AMS.}, 176 (1973), 227.   Google Scholar

[13]

R. J. Iorio, On the Cauchy problem for the Benjamin-Ono equation,, \emph{Comm. P. D. E.}, 11 (1986), 1031.  doi: 10.1080/03605308608820456.  Google Scholar

[14]

R. J. Iorio, Unique continuation principle for the Benjamin-Ono equation,, \emph{Diff. and Int. Eqs.}, 16 (2003), 1281.   Google Scholar

[15]

R. J. Iorio and V. Iorio, Fourier Analysis and Partial Differential Equations,, Cambridge University Press, (2001).  doi: 10.1017/CBO9780511623745.  Google Scholar

[16]

H. Kalisch, Error analysis of a spectral projection of the regularized Benjamin-Ono equation,, \emph{BIT}, 45 (2005), 69.  doi: 10.1007/s10543-005-2636-x.  Google Scholar

[17]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation,, \emph{Advances in Mathematics Supplementary Studies, 8 (1983), 93.   Google Scholar

[18]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-stokes equations,, \emph{Comm. Pure Appl. Math.}, 41 (1988), 891.  doi: 10.1002/cpa.3160410704.  Google Scholar

[19]

C. E. Kenig, G. Ponce and L. Vega, On the unique continuation of solutions to the generalized KdV equation,, \emph{Math. Res. Letters}, 10 (2003), 833.  doi: 10.4310/MRL.2003.v10.n6.a10.  Google Scholar

[20]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,, \emph{Philos. Mag. 5}, 39 (1895), 22.   Google Scholar

[21]

H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation,, \emph{Int. Math. Res. Not.}, 30 (2005), 1833.  doi: 10.1155/IMRN.2005.1833.  Google Scholar

[22]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations,, Universitext. Springer, (2009).   Google Scholar

[23]

L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations,, \emph{SIAM J. Math. Anal.}, 33 (2001), 982.  doi: 10.1137/S0036141001385307.  Google Scholar

[24]

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function,, \emph{Trans. AMS.}, 165 (1972), 207.   Google Scholar

[25]

J. Nahas and G. Ponce, On the persistent properties of solutions to semi-linear Schrödinger equation,, \emph{Comm. P.D.E.}, 34 (2009), 1208.  doi: 10.1080/03605300903129044.  Google Scholar

[26]

J. Nahas and G. Ponce, On the persistent properties of solutions of nonlinear dispersive equations in weighted Sobolev spaces,, \emph{RIMS Kokyuroku Bessatsu (RIMS Proceedings)}, (2011), 23.   Google Scholar

[27]

H. Ono, Algebraic solitary waves on stratified fluids,, \emph{J. Phy. Soc. Japan}, 39 (1975), 1082.   Google Scholar

[28]

G. Ponce, On the global well-posedness of the Benjamin-Ono equation,, \emph{Diff. Int. Eqs.}, 4 (1991), 527.   Google Scholar

[29]

E. M. Stein, The characterization of functions arising as potentials,, \emph{Bull. Amer. Math. Soc.}, 67 (1961), 102.   Google Scholar

[30]

E. M. Stein, Harmonic Analysis,, Princeton University Press, (1993).   Google Scholar

show all references

References:
[1]

J. Angulo, M. Scialom and C. Banquet, The regularized Benjamin-Ono and BBM equations: Well-posedness and nonlinear stability,, \emph{J. Diff. Eqs.}, 250 (2011), 4011.  doi: 10.1016/j.jde.2010.12.016.  Google Scholar

[2]

J. P. Albert and J. L. Bona, Comparisons between model equations for long waves,, \emph{J. Nonlinear Sci.}, 1 (1991), 345.  doi: 10.1007/BF01238818.  Google Scholar

[3]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth,, \emph{J. Fluid Mech.}, 29 (1967), 559.   Google Scholar

[4]

J. Bona and H. Kalisch, Models for internal waves in deep water,, \emph{Discrete Contin. Dyn. Syst.}, 6 (2000), 1.  doi: 10.3934/dcds.2000.6.1.  Google Scholar

[5]

H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations,, \emph{Nonlinear Anal. TMA.}, 4 (1980), 677.  doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[6]

J. Duoandikoetxea, Fourier Analysis,, Grad. Studies in Math., 29 (2001).   Google Scholar

[7]

L. Escauriaza, C. E. Kenig, G. Ponce and L. Vega, On uniqueness properties of solutions of the k-generalized KdV equations,, \emph{J. Funct. Anal.}, 244 (2007), 504.  doi: 10.1016/j.jfa.2006.11.004.  Google Scholar

[8]

L. Escauriaza, C. E. Kenig, G. Ponce and L. Vega, The sharp hardy uncertainty principle for Schrödinger evolutions,, \emph{Duke Math. J.}, 155 (2010), 163.  doi: 10.1215/00127094-2010-053.  Google Scholar

[9]

G. Fonseca and G. Ponce, The I.V.P for the Benjamin-Ono equation in weighted Sobolev spaces,, \emph{J. Funct. Anal.}, 260 (2011), 436.  doi: 10.1016/j.jfa.2010.09.010.  Google Scholar

[10]

G. Fonseca, F. Linares and G. Ponce, The I.V.P for the Benjamin-Ono equation in weighted Sobolev spaces II,, \emph{J. Funct. Anal.}, 262 (2012), 2031.  doi: 10.1016/j.jfa.2011.12.017.  Google Scholar

[11]

G. Fonseca, F. Linares and G. Ponce, The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces,, \emph{Ann. I. H. Poincar\'e-AN}, 30 (2013), 763.  doi: 10.1016/j.anihpc.2012.06.006.  Google Scholar

[12]

R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform,, \emph{Trans. AMS.}, 176 (1973), 227.   Google Scholar

[13]

R. J. Iorio, On the Cauchy problem for the Benjamin-Ono equation,, \emph{Comm. P. D. E.}, 11 (1986), 1031.  doi: 10.1080/03605308608820456.  Google Scholar

[14]

R. J. Iorio, Unique continuation principle for the Benjamin-Ono equation,, \emph{Diff. and Int. Eqs.}, 16 (2003), 1281.   Google Scholar

[15]

R. J. Iorio and V. Iorio, Fourier Analysis and Partial Differential Equations,, Cambridge University Press, (2001).  doi: 10.1017/CBO9780511623745.  Google Scholar

[16]

H. Kalisch, Error analysis of a spectral projection of the regularized Benjamin-Ono equation,, \emph{BIT}, 45 (2005), 69.  doi: 10.1007/s10543-005-2636-x.  Google Scholar

[17]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation,, \emph{Advances in Mathematics Supplementary Studies, 8 (1983), 93.   Google Scholar

[18]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-stokes equations,, \emph{Comm. Pure Appl. Math.}, 41 (1988), 891.  doi: 10.1002/cpa.3160410704.  Google Scholar

[19]

C. E. Kenig, G. Ponce and L. Vega, On the unique continuation of solutions to the generalized KdV equation,, \emph{Math. Res. Letters}, 10 (2003), 833.  doi: 10.4310/MRL.2003.v10.n6.a10.  Google Scholar

[20]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,, \emph{Philos. Mag. 5}, 39 (1895), 22.   Google Scholar

[21]

H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation,, \emph{Int. Math. Res. Not.}, 30 (2005), 1833.  doi: 10.1155/IMRN.2005.1833.  Google Scholar

[22]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations,, Universitext. Springer, (2009).   Google Scholar

[23]

L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations,, \emph{SIAM J. Math. Anal.}, 33 (2001), 982.  doi: 10.1137/S0036141001385307.  Google Scholar

[24]

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function,, \emph{Trans. AMS.}, 165 (1972), 207.   Google Scholar

[25]

J. Nahas and G. Ponce, On the persistent properties of solutions to semi-linear Schrödinger equation,, \emph{Comm. P.D.E.}, 34 (2009), 1208.  doi: 10.1080/03605300903129044.  Google Scholar

[26]

J. Nahas and G. Ponce, On the persistent properties of solutions of nonlinear dispersive equations in weighted Sobolev spaces,, \emph{RIMS Kokyuroku Bessatsu (RIMS Proceedings)}, (2011), 23.   Google Scholar

[27]

H. Ono, Algebraic solitary waves on stratified fluids,, \emph{J. Phy. Soc. Japan}, 39 (1975), 1082.   Google Scholar

[28]

G. Ponce, On the global well-posedness of the Benjamin-Ono equation,, \emph{Diff. Int. Eqs.}, 4 (1991), 527.   Google Scholar

[29]

E. M. Stein, The characterization of functions arising as potentials,, \emph{Bull. Amer. Math. Soc.}, 67 (1961), 102.   Google Scholar

[30]

E. M. Stein, Harmonic Analysis,, Princeton University Press, (1993).   Google Scholar

[1]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[2]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[5]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[10]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[11]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[12]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[13]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[17]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[20]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]