January  2015, 14(1): 133-142. doi: 10.3934/cpaa.2015.14.133

Remarks on the comparison principle for quasilinear PDE with no zeroth order terms

1. 

Mathematical Institute, Tohoku University, Aoba, Sendai, 980-8578, Japan, Japan

Received  January 2014 Revised  April 2014 Published  September 2014

A comparison principle for viscosity solutions of second-order quasilinear elliptic partial di erential equations with no zeroth order terms is shown. A di erent transformation from that of Barles and Busca in [3] is adapted to enable us to deal with slightly more general equations.
Citation: Shigeaki Koike, Takahiro Kosugi. Remarks on the comparison principle for quasilinear PDE with no zeroth order terms. Communications on Pure and Applied Analysis, 2015, 14 (1) : 133-142. doi: 10.3934/cpaa.2015.14.133
References:
[1]

G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., 41 (2004), 439-505. doi: 10.1090/S0273-0979-04-01035-3.

[2]

M. Bardi and F. Da Lio, On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math., 73 (1999), 276-285. doi: 10.1007/s000130050399.

[3]

G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Differential Equations, 26 (2001), 2323-2337. doi: 10.1081/PDE-100107824.

[4]

G. Barles, E. Rouy and P. E. Souganidis, Remarks on the Dirichlet problem for quasilinear elliptic and parabolic equations, Stochastic Analysis, Control, Optimization and Applications, Birkhäuser, Boston, (1999), 209-222.

[5]

M. G. Crandall, A visit with the $\infty$-Laplace equation, Lecture Notes in Math., 1927, Springer, Berlin, (2008), 75-122. doi: 10.1007/978-3-540-75914-0_3.

[6]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 277 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.

[7]

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42. doi: 10.2307/1999343.

[8]

Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geometry, 33 (1991), 749-786.

[9]

H. Ishii and S. Koike, Viscosity solutions of a system of nonlinear second-order elliptic PDEs arising in switching games, Funkcial. Ekvac., 34 (1991), 143-155.

[10]

R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Math., 101 (1988), 1-27. doi: 10.1007/BF00281780.

[11]

R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74. doi: 10.1007/BF00386368.

[12]

P. Juutinen, P. Lindqvist and J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasilinear eqation, SIAM J. Math. Anal., 33 (2001), 699-717. doi: 10.1137/S0036141000372179.

[13]

B. Kawohl and N. Kutev, Comparison principle and Lipschitz regularity for viscosity solutions of nonlinear partial differential equations, Funkcial. Ekvac., 43 (2000), 241-253.

[14]

B. Kawohl and N. Kutev, Comparison principle for viscosity solutions of fully nonlinear, degenerate elliptic equations, Comm. Partial Differential Equations, 32 (2007), 1209-1224. doi: 10.1080/03605300601113043.

[15]

S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, MSJ memoir 13, Math. Soc. Japan, 2004.

[16]

P. Lindqvist, Notes on the $p$-Laplace equation, Report. University of Jyväskylä, Department of Mathematics and Statics, 102, 2006.

[17]

Y. Luo and A. Eberhard, Comparison principle for viscosity solutions of elliptic equations via fuzzy sum rule, J. Math. Anal. Appl., 307 (2005), 736-752. doi: 10.1016/j.jmaa.2005.01.055.

[18]

R. T. Rockafellar, Convex Analysis, Princeton Math. Series, 28, Princeton University Press, 1970.

[19]

N. S. Trudinger, Comparison principles and pointwise estimates for viscosity solutions, Rev. Mat. Iberoamericana, 4 (1988), 453-468. doi: 10.4171/RMI/80.

show all references

References:
[1]

G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., 41 (2004), 439-505. doi: 10.1090/S0273-0979-04-01035-3.

[2]

M. Bardi and F. Da Lio, On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math., 73 (1999), 276-285. doi: 10.1007/s000130050399.

[3]

G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Differential Equations, 26 (2001), 2323-2337. doi: 10.1081/PDE-100107824.

[4]

G. Barles, E. Rouy and P. E. Souganidis, Remarks on the Dirichlet problem for quasilinear elliptic and parabolic equations, Stochastic Analysis, Control, Optimization and Applications, Birkhäuser, Boston, (1999), 209-222.

[5]

M. G. Crandall, A visit with the $\infty$-Laplace equation, Lecture Notes in Math., 1927, Springer, Berlin, (2008), 75-122. doi: 10.1007/978-3-540-75914-0_3.

[6]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 277 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.

[7]

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42. doi: 10.2307/1999343.

[8]

Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geometry, 33 (1991), 749-786.

[9]

H. Ishii and S. Koike, Viscosity solutions of a system of nonlinear second-order elliptic PDEs arising in switching games, Funkcial. Ekvac., 34 (1991), 143-155.

[10]

R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Math., 101 (1988), 1-27. doi: 10.1007/BF00281780.

[11]

R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74. doi: 10.1007/BF00386368.

[12]

P. Juutinen, P. Lindqvist and J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasilinear eqation, SIAM J. Math. Anal., 33 (2001), 699-717. doi: 10.1137/S0036141000372179.

[13]

B. Kawohl and N. Kutev, Comparison principle and Lipschitz regularity for viscosity solutions of nonlinear partial differential equations, Funkcial. Ekvac., 43 (2000), 241-253.

[14]

B. Kawohl and N. Kutev, Comparison principle for viscosity solutions of fully nonlinear, degenerate elliptic equations, Comm. Partial Differential Equations, 32 (2007), 1209-1224. doi: 10.1080/03605300601113043.

[15]

S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, MSJ memoir 13, Math. Soc. Japan, 2004.

[16]

P. Lindqvist, Notes on the $p$-Laplace equation, Report. University of Jyväskylä, Department of Mathematics and Statics, 102, 2006.

[17]

Y. Luo and A. Eberhard, Comparison principle for viscosity solutions of elliptic equations via fuzzy sum rule, J. Math. Anal. Appl., 307 (2005), 736-752. doi: 10.1016/j.jmaa.2005.01.055.

[18]

R. T. Rockafellar, Convex Analysis, Princeton Math. Series, 28, Princeton University Press, 1970.

[19]

N. S. Trudinger, Comparison principles and pointwise estimates for viscosity solutions, Rev. Mat. Iberoamericana, 4 (1988), 453-468. doi: 10.4171/RMI/80.

[1]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[2]

Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897

[3]

Giuseppe Riey. Regularity and weak comparison principles for double phase quasilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4863-4873. doi: 10.3934/dcds.2019198

[4]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations and Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[5]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[6]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[7]

Pablo Ochoa, Julio Alejo Ruiz. A study of comparison, existence and regularity of viscosity and weak solutions for quasilinear equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1091-1115. doi: 10.3934/cpaa.2019053

[8]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[9]

Claudianor Oliveira Alves, Paulo Cesar Carrião, Olímpio Hiroshi Miyagaki. Signed solution for a class of quasilinear elliptic problem with critical growth. Communications on Pure and Applied Analysis, 2002, 1 (4) : 531-545. doi: 10.3934/cpaa.2002.1.531

[10]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure and Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[11]

Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004

[12]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[13]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure and Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

[14]

Jing Wang, Lining Tong. Vanishing viscosity limit of 1d quasilinear parabolic equation with multiple boundary layers. Communications on Pure and Applied Analysis, 2019, 18 (2) : 887-910. doi: 10.3934/cpaa.2019043

[15]

Fang-Fang Liao, Chun-Lei Tang. Four positive solutions of a quasilinear elliptic equation in $ R^N$. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2577-2600. doi: 10.3934/cpaa.2013.12.2577

[16]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[17]

Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks and Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361

[18]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control and Related Fields, 2021, 11 (3) : 521-554. doi: 10.3934/mcrf.2020052

[19]

Baojun Bian, Shuntai Hu, Quan Yuan, Harry Zheng. Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5413-5433. doi: 10.3934/dcds.2015.35.5413

[20]

Siegfried Carl. Comparison results for a class of quasilinear evolutionary hemivariational inequalities. Conference Publications, 2007, 2007 (Special) : 221-229. doi: 10.3934/proc.2007.2007.221

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (126)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]