January  2015, 14(1): 133-142. doi: 10.3934/cpaa.2015.14.133

Remarks on the comparison principle for quasilinear PDE with no zeroth order terms

1. 

Mathematical Institute, Tohoku University, Aoba, Sendai, 980-8578, Japan, Japan

Received  January 2014 Revised  April 2014 Published  September 2014

A comparison principle for viscosity solutions of second-order quasilinear elliptic partial di erential equations with no zeroth order terms is shown. A di erent transformation from that of Barles and Busca in [3] is adapted to enable us to deal with slightly more general equations.
Citation: Shigeaki Koike, Takahiro Kosugi. Remarks on the comparison principle for quasilinear PDE with no zeroth order terms. Communications on Pure & Applied Analysis, 2015, 14 (1) : 133-142. doi: 10.3934/cpaa.2015.14.133
References:
[1]

G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, \emph{Bull. Amer. Math. Soc.}, 41 (2004), 439.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[2]

M. Bardi and F. Da Lio, On the strong maximum principle for fully nonlinear degenerate elliptic equations,, \emph{Arch. Math.}, 73 (1999), 276.  doi: 10.1007/s000130050399.  Google Scholar

[3]

G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term,, \emph{Comm. Partial Differential Equations}, 26 (2001), 2323.  doi: 10.1081/PDE-100107824.  Google Scholar

[4]

G. Barles, E. Rouy and P. E. Souganidis, Remarks on the Dirichlet problem for quasilinear elliptic and parabolic equations,, \emph{Stochastic Analysis, (1999), 209.   Google Scholar

[5]

M. G. Crandall, A visit with the $\infty$-Laplace equation,, \emph{Lecture Notes in Math.}, 1927 (2008), 75.  doi: 10.1007/978-3-540-75914-0_3.  Google Scholar

[6]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc.}, 277 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[7]

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations,, \emph{Trans. Amer. Math. Soc.}, 277 (1983), 1.  doi: 10.2307/1999343.  Google Scholar

[8]

Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations,, \emph{J. Differential Geometry}, 33 (1991), 749.   Google Scholar

[9]

H. Ishii and S. Koike, Viscosity solutions of a system of nonlinear second-order elliptic PDEs arising in switching games,, \emph{Funkcial. Ekvac.}, 34 (1991), 143.   Google Scholar

[10]

R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations,, \emph{Arch. Rational Mech. Math.}, 101 (1988), 1.  doi: 10.1007/BF00281780.  Google Scholar

[11]

R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient,, \emph{Arch. Rational Mech. Anal.}, 123 (1993), 51.  doi: 10.1007/BF00386368.  Google Scholar

[12]

P. Juutinen, P. Lindqvist and J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasilinear eqation,, \emph{SIAM J. Math. Anal.}, 33 (2001), 699.  doi: 10.1137/S0036141000372179.  Google Scholar

[13]

B. Kawohl and N. Kutev, Comparison principle and Lipschitz regularity for viscosity solutions of nonlinear partial differential equations,, \emph{Funkcial. Ekvac.}, 43 (2000), 241.   Google Scholar

[14]

B. Kawohl and N. Kutev, Comparison principle for viscosity solutions of fully nonlinear, degenerate elliptic equations,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1209.  doi: 10.1080/03605300601113043.  Google Scholar

[15]

S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions,, MSJ memoir \textbf{13}, 13 (2004).   Google Scholar

[16]

P. Lindqvist, Notes on the $p$-Laplace equation, Report., \emph{University of Jyv\, 102 (2006).   Google Scholar

[17]

Y. Luo and A. Eberhard, Comparison principle for viscosity solutions of elliptic equations via fuzzy sum rule,, \emph{J. Math. Anal. Appl.}, 307 (2005), 736.  doi: 10.1016/j.jmaa.2005.01.055.  Google Scholar

[18]

R. T. Rockafellar, Convex Analysis,, Princeton Math. Series, 28 (1970).   Google Scholar

[19]

N. S. Trudinger, Comparison principles and pointwise estimates for viscosity solutions,, \emph{Rev. Mat. Iberoamericana}, 4 (1988), 453.  doi: 10.4171/RMI/80.  Google Scholar

show all references

References:
[1]

G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, \emph{Bull. Amer. Math. Soc.}, 41 (2004), 439.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[2]

M. Bardi and F. Da Lio, On the strong maximum principle for fully nonlinear degenerate elliptic equations,, \emph{Arch. Math.}, 73 (1999), 276.  doi: 10.1007/s000130050399.  Google Scholar

[3]

G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term,, \emph{Comm. Partial Differential Equations}, 26 (2001), 2323.  doi: 10.1081/PDE-100107824.  Google Scholar

[4]

G. Barles, E. Rouy and P. E. Souganidis, Remarks on the Dirichlet problem for quasilinear elliptic and parabolic equations,, \emph{Stochastic Analysis, (1999), 209.   Google Scholar

[5]

M. G. Crandall, A visit with the $\infty$-Laplace equation,, \emph{Lecture Notes in Math.}, 1927 (2008), 75.  doi: 10.1007/978-3-540-75914-0_3.  Google Scholar

[6]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc.}, 277 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[7]

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations,, \emph{Trans. Amer. Math. Soc.}, 277 (1983), 1.  doi: 10.2307/1999343.  Google Scholar

[8]

Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations,, \emph{J. Differential Geometry}, 33 (1991), 749.   Google Scholar

[9]

H. Ishii and S. Koike, Viscosity solutions of a system of nonlinear second-order elliptic PDEs arising in switching games,, \emph{Funkcial. Ekvac.}, 34 (1991), 143.   Google Scholar

[10]

R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations,, \emph{Arch. Rational Mech. Math.}, 101 (1988), 1.  doi: 10.1007/BF00281780.  Google Scholar

[11]

R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient,, \emph{Arch. Rational Mech. Anal.}, 123 (1993), 51.  doi: 10.1007/BF00386368.  Google Scholar

[12]

P. Juutinen, P. Lindqvist and J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasilinear eqation,, \emph{SIAM J. Math. Anal.}, 33 (2001), 699.  doi: 10.1137/S0036141000372179.  Google Scholar

[13]

B. Kawohl and N. Kutev, Comparison principle and Lipschitz regularity for viscosity solutions of nonlinear partial differential equations,, \emph{Funkcial. Ekvac.}, 43 (2000), 241.   Google Scholar

[14]

B. Kawohl and N. Kutev, Comparison principle for viscosity solutions of fully nonlinear, degenerate elliptic equations,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1209.  doi: 10.1080/03605300601113043.  Google Scholar

[15]

S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions,, MSJ memoir \textbf{13}, 13 (2004).   Google Scholar

[16]

P. Lindqvist, Notes on the $p$-Laplace equation, Report., \emph{University of Jyv\, 102 (2006).   Google Scholar

[17]

Y. Luo and A. Eberhard, Comparison principle for viscosity solutions of elliptic equations via fuzzy sum rule,, \emph{J. Math. Anal. Appl.}, 307 (2005), 736.  doi: 10.1016/j.jmaa.2005.01.055.  Google Scholar

[18]

R. T. Rockafellar, Convex Analysis,, Princeton Math. Series, 28 (1970).   Google Scholar

[19]

N. S. Trudinger, Comparison principles and pointwise estimates for viscosity solutions,, \emph{Rev. Mat. Iberoamericana}, 4 (1988), 453.  doi: 10.4171/RMI/80.  Google Scholar

[1]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[2]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[3]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[5]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[6]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[9]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[14]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]