\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Remarks on the comparison principle for quasilinear PDE with no zeroth order terms

Abstract Related Papers Cited by
  • A comparison principle for viscosity solutions of second-order quasilinear elliptic partial di erential equations with no zeroth order terms is shown. A di erent transformation from that of Barles and Busca in [3] is adapted to enable us to deal with slightly more general equations.
    Mathematics Subject Classification: Primary: 49L25; Secondary: 35J70, 35J92.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., 41 (2004), 439-505.doi: 10.1090/S0273-0979-04-01035-3.

    [2]

    M. Bardi and F. Da Lio, On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math., 73 (1999), 276-285.doi: 10.1007/s000130050399.

    [3]

    G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Differential Equations, 26 (2001), 2323-2337.doi: 10.1081/PDE-100107824.

    [4]

    G. Barles, E. Rouy and P. E. Souganidis, Remarks on the Dirichlet problem for quasilinear elliptic and parabolic equations, Stochastic Analysis, Control, Optimization and Applications, Birkhäuser, Boston, (1999), 209-222.

    [5]

    M. G. Crandall, A visit with the $\infty$-Laplace equation, Lecture Notes in Math., 1927, Springer, Berlin, (2008), 75-122.doi: 10.1007/978-3-540-75914-0_3.

    [6]

    M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 277 (1992), 1-67.doi: 10.1090/S0273-0979-1992-00266-5.

    [7]

    M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42.doi: 10.2307/1999343.

    [8]

    Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geometry, 33 (1991), 749-786.

    [9]

    H. Ishii and S. Koike, Viscosity solutions of a system of nonlinear second-order elliptic PDEs arising in switching games, Funkcial. Ekvac., 34 (1991), 143-155.

    [10]

    R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Math., 101 (1988), 1-27.doi: 10.1007/BF00281780.

    [11]

    R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.doi: 10.1007/BF00386368.

    [12]

    P. Juutinen, P. Lindqvist and J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasilinear eqation, SIAM J. Math. Anal., 33 (2001), 699-717.doi: 10.1137/S0036141000372179.

    [13]

    B. Kawohl and N. Kutev, Comparison principle and Lipschitz regularity for viscosity solutions of nonlinear partial differential equations, Funkcial. Ekvac., 43 (2000), 241-253.

    [14]

    B. Kawohl and N. Kutev, Comparison principle for viscosity solutions of fully nonlinear, degenerate elliptic equations, Comm. Partial Differential Equations, 32 (2007), 1209-1224.doi: 10.1080/03605300601113043.

    [15]

    S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, MSJ memoir 13, Math. Soc. Japan, 2004.

    [16]

    P. Lindqvist, Notes on the $p$-Laplace equation, Report. University of Jyväskylä, Department of Mathematics and Statics, 102, 2006.

    [17]

    Y. Luo and A. Eberhard, Comparison principle for viscosity solutions of elliptic equations via fuzzy sum rule, J. Math. Anal. Appl., 307 (2005), 736-752.doi: 10.1016/j.jmaa.2005.01.055.

    [18]

    R. T. Rockafellar, Convex Analysis, Princeton Math. Series, 28, Princeton University Press, 1970.

    [19]

    N. S. Trudinger, Comparison principles and pointwise estimates for viscosity solutions, Rev. Mat. Iberoamericana, 4 (1988), 453-468.doi: 10.4171/RMI/80.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(172) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return