-
Previous Article
Nonlinear dispersive wave equations in two space dimensions
- CPAA Home
- This Issue
-
Next Article
On a system of semirelativistic equations in the energy space
Modified wave operators without loss of regularity for some long range Hartree equations. II
1. | Laboratoire de Physique Théorique, (Unité Mixte de Recherche CNRS UMR 8627), Université de Paris-Sud, Bâtiment 210, F-91405 Orsay Cedex, France |
2. | Dipartimento di Fisica e Astronomia, Università di Bologna and INFN, Sezione di Bologna, Italy |
References:
[1] |
J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. |
[2] |
J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree-type equations I, Rev. Math. Phys., 12 (2000), 361-429.
doi: 10.1142/S0129055X00000137. |
[3] |
J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree-type equations II, Ann. Henri Poincaré, 1 (2000), 753-800.
doi: 10.1007/PL00001014. |
[4] |
J. Ginibre and G. Velo, Long range scattering for the Wave-Schrödinger system revisited, J. Diff. Eq., 252 (2012), 1642-1667.
doi: 10.1016/j.jde.2011.07.003. |
[5] |
J. Ginibre and G. Velo, Modified wave operators without loss of regularity for some long range Hartree equations I, preprint, Orsay 2012, ArXiv 12054943.
doi: 10.1007/s00023-013-0257-5. |
[6] |
K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space, Commun. Pure Appl. Anal., 1 (2002), 237-252.
doi: 10.3934/cpaa.2002.1.237. |
[7] |
K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space II, Ann. Henri Poincaré, 3 (2002), 503-535.
doi: 10.1007/s00023-002-8626-5. |
[8] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. |
show all references
References:
[1] |
J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. |
[2] |
J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree-type equations I, Rev. Math. Phys., 12 (2000), 361-429.
doi: 10.1142/S0129055X00000137. |
[3] |
J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree-type equations II, Ann. Henri Poincaré, 1 (2000), 753-800.
doi: 10.1007/PL00001014. |
[4] |
J. Ginibre and G. Velo, Long range scattering for the Wave-Schrödinger system revisited, J. Diff. Eq., 252 (2012), 1642-1667.
doi: 10.1016/j.jde.2011.07.003. |
[5] |
J. Ginibre and G. Velo, Modified wave operators without loss of regularity for some long range Hartree equations I, preprint, Orsay 2012, ArXiv 12054943.
doi: 10.1007/s00023-013-0257-5. |
[6] |
K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space, Commun. Pure Appl. Anal., 1 (2002), 237-252.
doi: 10.3934/cpaa.2002.1.237. |
[7] |
K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space II, Ann. Henri Poincaré, 3 (2002), 503-535.
doi: 10.1007/s00023-002-8626-5. |
[8] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. |
[1] |
Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261 |
[2] |
Kenji Nakanishi. Modified wave operators for the Hartree equation with data, image and convergence in the same space. Communications on Pure and Applied Analysis, 2002, 1 (2) : 237-252. doi: 10.3934/cpaa.2002.1.237 |
[3] |
Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. On small data scattering of Hartree equations with short-range interaction. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1809-1823. doi: 10.3934/cpaa.2016016 |
[4] |
Ricardo Weder, Dimitri Yafaev. Inverse scattering at a fixed energy for long-range potentials. Inverse Problems and Imaging, 2007, 1 (1) : 217-224. doi: 10.3934/ipi.2007.1.217 |
[5] |
Tarek Saanouni. Energy scattering for the focusing fractional generalized Hartree equation. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3637-3654. doi: 10.3934/cpaa.2021124 |
[6] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[7] |
Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Corrigendum to "On small data scattering of Hartree equations with short-range interaction" [Comm. Pure. Appl. Anal., 15 (2016), 1809-1823]. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1939-1940. doi: 10.3934/cpaa.2017094 |
[8] |
Peter Bates, Chunlei Zhang. Traveling pulses for the Klein-Gordon equation on a lattice or continuum with long-range interaction. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 235-252. doi: 10.3934/dcds.2006.16.235 |
[9] |
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013 |
[10] |
H. A. Erbay, S. Erbay, A. Erkip. The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6101-6116. doi: 10.3934/dcds.2016066 |
[11] |
Changhun Yang. Scattering results for Dirac Hartree-type equations with small initial data. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1711-1734. doi: 10.3934/cpaa.2019081 |
[12] |
Anudeep Kumar Arora. Scattering of radial data in the focusing NLS and generalized Hartree equations. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6643-6668. doi: 10.3934/dcds.2019289 |
[13] |
Juan Kalemkerian, Andrés Sosa. Long-range dependence in the volatility of returns in Uruguayan sovereign debt indices. Journal of Dynamics and Games, 2020, 7 (3) : 225-237. doi: 10.3934/jdg.2020016 |
[14] |
Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055 |
[15] |
Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks and Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465 |
[16] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011 |
[17] |
Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431 |
[18] |
Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459 |
[19] |
Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146 |
[20] |
Can Gao, Joachim Krieger. Optimal polynomial blow up range for critical wave maps. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1705-1741. doi: 10.3934/cpaa.2015.14.1705 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]