July  2015, 14(4): 1377-1393. doi: 10.3934/cpaa.2015.14.1377

Nonlinear dispersive wave equations in two space dimensions

1. 

Department of Mathematics, Graduate School of Science, Osaka University, Osaka Toyonaka 560-0043

2. 

Department of Mathematics, Graduate School of Science, Osaka University, Osaka, Toyonaka, 560-0043, Japan

3. 

Instituto de Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), Morelia CP 58089, Michoacán, Mexico

Received  February 2013 Revised  July 2013 Published  April 2015

We study the global existence and time decay of solutions to nonlinear dispersive wave equations $ \partial_t^2 u+\frac{1}{\rho^2}( -\Delta) ^{\rho }u=F ( \partial _t u )$ in two space dimensions, where $F( \partial _t u) =\lambda \vert \partial _t u\vert ^{p-1}\partial _t u$ or $\lambda \vert \partial _t u \vert ^p$, $\lambda \in \mathbf{C,}$ with $ p > 2 $ for $0 < \rho <1,$ $p > 3$ for $\rho =1,$ and $p > 1+\rho $ for $1 < \rho <2.$ If $\rho =1,$ then the equation converts into the well-known nonlinear wave equation.
Citation: Nakao Hayashi, Seishirou Kobayashi, Pavel I. Naumkin. Nonlinear dispersive wave equations in two space dimensions. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1377-1393. doi: 10.3934/cpaa.2015.14.1377
References:
[1]

P. Brenner, On $L^p-L^q$ estimate of the wave equation,, \emph{Math. Z.}, 145 (1975), 251.   Google Scholar

[2]

Y. Cho, T. Ozawa and S. Xia, Remarks on some dispersive estimates,, \emph{Comm. Pure Appl. Anal.}, 10 (2011), 1121.  doi: 10.3934/cpaa.2011.10.1121.  Google Scholar

[3]

J. Ginibre and G. Velo, Generalized Strichartz inequality for the wave equation,, \emph{J. Funct. Anal.}, 133 (1995), 50.  doi: 10.1006/jfan.1995.1119.  Google Scholar

[4]

N. Hayashi, Global existence of small solutions to quadratic nonlinear Schrödinger equations,, \emph{Commun. P.D.E.}, 18 (1993), 1109.  doi: 10.1080/03605309308820965.  Google Scholar

[5]

N. Hayashi, S. Kobayashi and P. Naumkin, Global existence of solutions to nonlinear dispersive wave equations,, \emph{Differential and Integral Equations}, 25 (2012), 685.   Google Scholar

[6]

N. Hayashi, C. Li and P. Naumkin, Non existence of asymptotically free solution of systems of nolinear Schrödinger equations,, \emph{Electron. J. Diff. Equ.}, 162 (2012), 1.   Google Scholar

[7]

K. Hidano and K. Tsutaya, Global existence and asymptotic behavior of solutions for nonlinear wave equations,, \emph{Indiana Univ. Math. J.}, 44 (1995), 1273.  doi: 10.1512/iumj.1995.44.2028.  Google Scholar

[8]

C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations,, \emph{Indiana Univ. Math. J.}, 40 (1991), 33.  doi: 10.1512/iumj.1991.40.40003.  Google Scholar

[9]

S. Klainerman, The null condition and global existence to nonlinear wave equations,, \emph{Lect. Appl. Math.}, 23 (1986), 293.   Google Scholar

[10]

M. Nakamura, Remarks on Keel-Smith-Sogge estimates and some applications to nonlinear higher order wave equations,, \emph{Differential and Integral Equations}, 24 (2011), 519.   Google Scholar

[11]

T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations,, \emph{Nonlinear Analysis, 14 (1990), 765.  doi: 10.1016/0362-546X(90)90104-O.  Google Scholar

[12]

J-Q. Yao, Comportment à l'infini des solutions d'une équation de Schrödinger non linéaire dans un domaine extérier,, \emph{C. R. Acad, 294 (1982), 163.   Google Scholar

show all references

References:
[1]

P. Brenner, On $L^p-L^q$ estimate of the wave equation,, \emph{Math. Z.}, 145 (1975), 251.   Google Scholar

[2]

Y. Cho, T. Ozawa and S. Xia, Remarks on some dispersive estimates,, \emph{Comm. Pure Appl. Anal.}, 10 (2011), 1121.  doi: 10.3934/cpaa.2011.10.1121.  Google Scholar

[3]

J. Ginibre and G. Velo, Generalized Strichartz inequality for the wave equation,, \emph{J. Funct. Anal.}, 133 (1995), 50.  doi: 10.1006/jfan.1995.1119.  Google Scholar

[4]

N. Hayashi, Global existence of small solutions to quadratic nonlinear Schrödinger equations,, \emph{Commun. P.D.E.}, 18 (1993), 1109.  doi: 10.1080/03605309308820965.  Google Scholar

[5]

N. Hayashi, S. Kobayashi and P. Naumkin, Global existence of solutions to nonlinear dispersive wave equations,, \emph{Differential and Integral Equations}, 25 (2012), 685.   Google Scholar

[6]

N. Hayashi, C. Li and P. Naumkin, Non existence of asymptotically free solution of systems of nolinear Schrödinger equations,, \emph{Electron. J. Diff. Equ.}, 162 (2012), 1.   Google Scholar

[7]

K. Hidano and K. Tsutaya, Global existence and asymptotic behavior of solutions for nonlinear wave equations,, \emph{Indiana Univ. Math. J.}, 44 (1995), 1273.  doi: 10.1512/iumj.1995.44.2028.  Google Scholar

[8]

C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations,, \emph{Indiana Univ. Math. J.}, 40 (1991), 33.  doi: 10.1512/iumj.1991.40.40003.  Google Scholar

[9]

S. Klainerman, The null condition and global existence to nonlinear wave equations,, \emph{Lect. Appl. Math.}, 23 (1986), 293.   Google Scholar

[10]

M. Nakamura, Remarks on Keel-Smith-Sogge estimates and some applications to nonlinear higher order wave equations,, \emph{Differential and Integral Equations}, 24 (2011), 519.   Google Scholar

[11]

T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations,, \emph{Nonlinear Analysis, 14 (1990), 765.  doi: 10.1016/0362-546X(90)90104-O.  Google Scholar

[12]

J-Q. Yao, Comportment à l'infini des solutions d'une équation de Schrödinger non linéaire dans un domaine extérier,, \emph{C. R. Acad, 294 (1982), 163.   Google Scholar

[1]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[2]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[9]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[10]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[11]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[12]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[13]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[14]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[15]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[16]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[17]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[20]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

[Back to Top]