July  2015, 14(4): 1407-1442. doi: 10.3934/cpaa.2015.14.1407

Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms

1. 

Department of Mathematics, University of California, Santa Barbara, CA 93106, United States, United States

Received  December 2013 Revised  April 2014 Published  April 2015

The existence of global small $\mathcal O(\varepsilon )$ solutions to quadratically nonlinear wave equations in three space dimensions under the null condition is shown to be stable under the simultaneous addition of small $\mathcal O(\nu)$ viscous dissipation and $\mathcal O(\delta)$ non-null quadratic nonlinearities, provided that $\varepsilon \delta/\nu\ll 1$. When this condition is not met, small solutions exist ``almost globally'', and in certain parameter ranges, the addition of dissipation enhances the lifespan.
Citation: Boyan Jonov, Thomas C. Sideris. Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1407-1442. doi: 10.3934/cpaa.2015.14.1407
References:
[1]

Demetrios Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data,, \emph{Comm. Pure Appl. Math.}, 39 (1986), 267.  doi: 10.1002/cpa.3160390205.  Google Scholar

[2]

Kunio Hidano, An elementary proof of global or almost global existence for quasi-linear wave equations,, \emph{Tohoku Math. J.}, 56 (2004), 271.   Google Scholar

[3]

Fritz John and Sergiu Klainerman, Almost global existence to nonlinear wave equations in three space dimensions,, \emph{Comm. Pure Appl. Math.}, 37 (1984), 443.  doi: 10.1002/cpa.3160370403.  Google Scholar

[4]

Paul Kessenich, Global existence with small initial data for three-dimensional incompressible isotropic viscoelastic materials,, eprint, ().   Google Scholar

[5]

Sergiu Klainerman, On "almost global'' solutions to quasilinear wave equations in three space dimensions,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 325.  doi: 10.1002/cpa.3160360304.  Google Scholar

[6]

Sergiu Klainerman, The null condition and global existence to nonlinear wave equations,, in \emph{Nonlinear Systems of Partial Differential Equations in Applied Mathematics}, 23 (1984), 293.   Google Scholar

[7]

Sergiu Klainerman and Thomas C. Sideris, On almost global existence for nonrelativistic wave equations in $3$D,, \emph{Comm. Pure Appl. Math.}, 49 (1996), 307.  doi: 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H.  Google Scholar

[8]

Takayuki Kobayashi, Hartmut Pecher and Yoshihiro Shibata, On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity,, \emph{Math. Ann.}, 296 (1993), 215.  doi: 10.1007/BF01445103.  Google Scholar

[9]

Gustavo Ponce, Global existence of small solutions to a class of nonlinear evolution equations,, \emph{Nonlinear Anal.}, 9 (1985), 399.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[10]

Thomas C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves,, \emph{Ann. of Math.}, 151 (2000), 849.  doi: 10.2307/121050.  Google Scholar

[11]

Thomas C. Sideris and Becca Thomases, Local energy decay for solutions of multi-dimensional isotropic symmetric hyperbolic systems,, \emph{J. Hyperbolic Differ. Equ.}, 3 (2006), 673.  doi: 10.1142/S0219891606000975.  Google Scholar

show all references

References:
[1]

Demetrios Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data,, \emph{Comm. Pure Appl. Math.}, 39 (1986), 267.  doi: 10.1002/cpa.3160390205.  Google Scholar

[2]

Kunio Hidano, An elementary proof of global or almost global existence for quasi-linear wave equations,, \emph{Tohoku Math. J.}, 56 (2004), 271.   Google Scholar

[3]

Fritz John and Sergiu Klainerman, Almost global existence to nonlinear wave equations in three space dimensions,, \emph{Comm. Pure Appl. Math.}, 37 (1984), 443.  doi: 10.1002/cpa.3160370403.  Google Scholar

[4]

Paul Kessenich, Global existence with small initial data for three-dimensional incompressible isotropic viscoelastic materials,, eprint, ().   Google Scholar

[5]

Sergiu Klainerman, On "almost global'' solutions to quasilinear wave equations in three space dimensions,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 325.  doi: 10.1002/cpa.3160360304.  Google Scholar

[6]

Sergiu Klainerman, The null condition and global existence to nonlinear wave equations,, in \emph{Nonlinear Systems of Partial Differential Equations in Applied Mathematics}, 23 (1984), 293.   Google Scholar

[7]

Sergiu Klainerman and Thomas C. Sideris, On almost global existence for nonrelativistic wave equations in $3$D,, \emph{Comm. Pure Appl. Math.}, 49 (1996), 307.  doi: 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H.  Google Scholar

[8]

Takayuki Kobayashi, Hartmut Pecher and Yoshihiro Shibata, On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity,, \emph{Math. Ann.}, 296 (1993), 215.  doi: 10.1007/BF01445103.  Google Scholar

[9]

Gustavo Ponce, Global existence of small solutions to a class of nonlinear evolution equations,, \emph{Nonlinear Anal.}, 9 (1985), 399.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[10]

Thomas C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves,, \emph{Ann. of Math.}, 151 (2000), 849.  doi: 10.2307/121050.  Google Scholar

[11]

Thomas C. Sideris and Becca Thomases, Local energy decay for solutions of multi-dimensional isotropic symmetric hyperbolic systems,, \emph{J. Hyperbolic Differ. Equ.}, 3 (2006), 673.  doi: 10.1142/S0219891606000975.  Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[3]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[4]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[7]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[8]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[14]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[15]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[18]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[19]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[20]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]