January  2015, 14(1): 143-166. doi: 10.3934/cpaa.2015.14.143

Convergence of equilibria for incompressible elastic plates in the von Kármán regime

1. 

University of Pittsburgh, Department of Mathematics, 301 Thackeray Hall, Pittsburgh, PA 15260

2. 

2030 Mary Ellen Lane, State College, PA 16803, United States

Received  March 2014 Revised  April 2014 Published  September 2014

We prove convergence of critical points to the nonlinear elastic energies $J^h$ of 3d thin incompressible plates, to critical points of the 2d energy obtained as the $\Gamma$-limit of $J^h$ in the von Kármán scaling regime. The presence of incompressibility constraint requires to restrict the class of admissible test functions to bounded divergence-free variations on the 3d deformations. This poses new technical obstacles, which we resolve by means of introducing 3d extensions and truncations of the 2d limiting deformations, specific to the problem at hand.
Citation: Marta Lewicka, Hui Li. Convergence of equilibria for incompressible elastic plates in the von Kármán regime. Communications on Pure & Applied Analysis, 2015, 14 (1) : 143-166. doi: 10.3934/cpaa.2015.14.143
References:
[1]

J. M. Ball, Minimizers and the Euler-Lagrange equations,, In \emph{Proc. ISIMM conference}, (1983).  doi: 10.1007/3-540-12916-2_47.  Google Scholar

[2]

J. M. Ball, Some open problems in elasticity,, \emph{Geometry, (2002), 3.  doi: 10.1007/0-387-21791-6_1.  Google Scholar

[3]

P. G. Ciarlet, Mathematical Elasticity,, North-Holland, (2000).   Google Scholar

[4]

P. G. Ciarlet and P. Rabier, Les Equations de von Karman,, \emph{Lecture Notes in Mathematics}, 826 (1980).   Google Scholar

[5]

S. Conti and G. Dolzmann, Derivation of a plate theory for incompressible materials,, \emph{C.R. Math. Acad. Sci. Paris}, 344 (2007), 541.  doi: 10.1016/j.crma.2007.03.013.  Google Scholar

[6]

S. Conti and G. Dolzmann, Gamma-convergence for incompressible elastic plates,, \emph{Calc. Var. PDE}, 34 (2009), 531.  doi: 10.1007/s00526-008-0194-1.  Google Scholar

[7]

G. Friesecke, R. D. James, M. G. Mora and S. Müller, Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence,, \emph{C. R. Math. Acad. Sci. Paris}, 336 (2003), 697.  doi: 10.1016/S1631-073X(03)00028-1.  Google Scholar

[8]

G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity,, \emph{Comm. Pure Appl. Math.}, 55 (2002), 1461.  doi: 10.1002/cpa.10048.  Google Scholar

[9]

G. Friesecke, R. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence,, \emph{Arch. Ration. Mech. Anal.}, 180 (2006), 183.  doi: 10.1007/s00205-005-0400-7.  Google Scholar

[10]

M. Lewicka, A note on the convergence of low energy critical points of nonlinear elasticity functionals, for thin shells of arbitrary geometry,, \emph{ESAIM: Control, 17 (2011), 493.  doi: 10.1051/cocv/2010002.  Google Scholar

[11]

M. Lewicka, L. Mahadevan and M. R. Pakzad, The Foppl-von Karman equations for plates with incompatible strains,, \emph{Proceedings of the Royal Society A}, 467 (2011), 402.  doi: 10.1098/rspa.2010.0138.  Google Scholar

[12]

M. Lewicka, L. Mahadevan and M. R. Pakzad, Models for elastic shells with incompatible strains,, \emph{Proceedings of the Royal Society A}, 470 (2014), 1471.  doi: 10.1098/rspa.2013.0604.  Google Scholar

[13]

M. Lewicka, M. G. Mora and M. R. Pakzad, Shell theories arising as low energy $\Gamma$-limit of 3d nonlinear elasticity,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, Vol. IX (2010), 1.   Google Scholar

[14]

M. Lewicka, M. G. Mora and M. R. Pakzad, The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells,, \emph{Arch. Rational Mech. Anal.}, 200 (2011), 1023.  doi: 10.1007/s00205-010-0387-6.  Google Scholar

[15]

M. Lewicka and M. R. Pakzad, The infinite hierarchy of elastic shell models; some recent results and a conjecture,, \emph{Infinite Dimensional Dynamical Systems, 64 (2013), 407.  doi: 10.1007/978-1-4614-4523-4_16.  Google Scholar

[16]

M. Lewicka and M. R. Pakzad, Scaling laws for non-Euclidean plates and the $W^{2,2}$ isometric immersions of Riemannian metrics,, \emph{ESAIM: Control, 17 (2011), 1158.  doi: 10.1051/cocv/2010039.  Google Scholar

[17]

H. Li, Topics in the Mathematical Theory of Nonlinear Elasticity,, Ph. D thesis, (2012).   Google Scholar

[18]

H. Li and M. Chermisi, The von Karman theory for incompressible elastic shells,, \emph{Calculus of Variations and PDE}, 48 (2013), 185.  doi: 10.1007/s00526-012-0549-5.  Google Scholar

[19]

M.G. Mora, S. Muller and M. G. Schultz, Convergence of equilibria of planar thin elastic beams,, \emph{Indiana Univ. Math. J.}, 56 (2007), 2413.  doi: 10.1512/iumj.2007.56.3023.  Google Scholar

[20]

M. G. Mora and L. Scardia, Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density,, \emph{J. Differential Equations}, 252 (2012), 35.  doi: 10.1016/j.jde.2011.09.009.  Google Scholar

[21]

S. Müller and M. R. Pakzad, Convergence of Equilibria of Thin Elastic Plates-The Von Karman Case,, \emph{Comm. Partial Differential Equations}, 33 (2008), 1018.  doi: 10.1080/03605300701629443.  Google Scholar

show all references

References:
[1]

J. M. Ball, Minimizers and the Euler-Lagrange equations,, In \emph{Proc. ISIMM conference}, (1983).  doi: 10.1007/3-540-12916-2_47.  Google Scholar

[2]

J. M. Ball, Some open problems in elasticity,, \emph{Geometry, (2002), 3.  doi: 10.1007/0-387-21791-6_1.  Google Scholar

[3]

P. G. Ciarlet, Mathematical Elasticity,, North-Holland, (2000).   Google Scholar

[4]

P. G. Ciarlet and P. Rabier, Les Equations de von Karman,, \emph{Lecture Notes in Mathematics}, 826 (1980).   Google Scholar

[5]

S. Conti and G. Dolzmann, Derivation of a plate theory for incompressible materials,, \emph{C.R. Math. Acad. Sci. Paris}, 344 (2007), 541.  doi: 10.1016/j.crma.2007.03.013.  Google Scholar

[6]

S. Conti and G. Dolzmann, Gamma-convergence for incompressible elastic plates,, \emph{Calc. Var. PDE}, 34 (2009), 531.  doi: 10.1007/s00526-008-0194-1.  Google Scholar

[7]

G. Friesecke, R. D. James, M. G. Mora and S. Müller, Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence,, \emph{C. R. Math. Acad. Sci. Paris}, 336 (2003), 697.  doi: 10.1016/S1631-073X(03)00028-1.  Google Scholar

[8]

G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity,, \emph{Comm. Pure Appl. Math.}, 55 (2002), 1461.  doi: 10.1002/cpa.10048.  Google Scholar

[9]

G. Friesecke, R. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence,, \emph{Arch. Ration. Mech. Anal.}, 180 (2006), 183.  doi: 10.1007/s00205-005-0400-7.  Google Scholar

[10]

M. Lewicka, A note on the convergence of low energy critical points of nonlinear elasticity functionals, for thin shells of arbitrary geometry,, \emph{ESAIM: Control, 17 (2011), 493.  doi: 10.1051/cocv/2010002.  Google Scholar

[11]

M. Lewicka, L. Mahadevan and M. R. Pakzad, The Foppl-von Karman equations for plates with incompatible strains,, \emph{Proceedings of the Royal Society A}, 467 (2011), 402.  doi: 10.1098/rspa.2010.0138.  Google Scholar

[12]

M. Lewicka, L. Mahadevan and M. R. Pakzad, Models for elastic shells with incompatible strains,, \emph{Proceedings of the Royal Society A}, 470 (2014), 1471.  doi: 10.1098/rspa.2013.0604.  Google Scholar

[13]

M. Lewicka, M. G. Mora and M. R. Pakzad, Shell theories arising as low energy $\Gamma$-limit of 3d nonlinear elasticity,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, Vol. IX (2010), 1.   Google Scholar

[14]

M. Lewicka, M. G. Mora and M. R. Pakzad, The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells,, \emph{Arch. Rational Mech. Anal.}, 200 (2011), 1023.  doi: 10.1007/s00205-010-0387-6.  Google Scholar

[15]

M. Lewicka and M. R. Pakzad, The infinite hierarchy of elastic shell models; some recent results and a conjecture,, \emph{Infinite Dimensional Dynamical Systems, 64 (2013), 407.  doi: 10.1007/978-1-4614-4523-4_16.  Google Scholar

[16]

M. Lewicka and M. R. Pakzad, Scaling laws for non-Euclidean plates and the $W^{2,2}$ isometric immersions of Riemannian metrics,, \emph{ESAIM: Control, 17 (2011), 1158.  doi: 10.1051/cocv/2010039.  Google Scholar

[17]

H. Li, Topics in the Mathematical Theory of Nonlinear Elasticity,, Ph. D thesis, (2012).   Google Scholar

[18]

H. Li and M. Chermisi, The von Karman theory for incompressible elastic shells,, \emph{Calculus of Variations and PDE}, 48 (2013), 185.  doi: 10.1007/s00526-012-0549-5.  Google Scholar

[19]

M.G. Mora, S. Muller and M. G. Schultz, Convergence of equilibria of planar thin elastic beams,, \emph{Indiana Univ. Math. J.}, 56 (2007), 2413.  doi: 10.1512/iumj.2007.56.3023.  Google Scholar

[20]

M. G. Mora and L. Scardia, Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density,, \emph{J. Differential Equations}, 252 (2012), 35.  doi: 10.1016/j.jde.2011.09.009.  Google Scholar

[21]

S. Müller and M. R. Pakzad, Convergence of Equilibria of Thin Elastic Plates-The Von Karman Case,, \emph{Comm. Partial Differential Equations}, 33 (2008), 1018.  doi: 10.1080/03605300701629443.  Google Scholar

[1]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[2]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[3]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

[4]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[5]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[6]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[7]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[8]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[9]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[10]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[11]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[12]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[13]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[14]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[15]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[16]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[17]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[18]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[19]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[20]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]