\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A numerical approach to Blow-up issues for Davey-Stewartson II systems

Abstract Related Papers Cited by
  • We provide a numerical study of various issues pertaining to the dynamics of the Davey-Stewartson II systems. In particular we investigate whether or not the properties (blow-up, radiation,...) displayed by the focusing and defocusing Davey-Stewartson II integrable systems persist in the non integrable cases.
    Mathematics Subject Classification: Primary: 35Q55, 35B44; Secondary: 35B65, 65M20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Notes series, 149, Cambridge University Press, 1991.doi: 10.1017/CBO9780511623998.

    [2]

    M. J. Ablowitz and H. Segur, On the evolution of packets of water waves, J. Fluid Mech., 92 (1979), 691-715.doi: 10.1017/S0022112079000835.

    [3]

    V. A. Arkadiev, A. K. Pogrebkov and M. C. Polivanov, Inverse scattering transform and soliton solution for Davey-Stewartson II equation, Physica D, 36 (1089), 188-197.doi: 10.1016/0167-2789(89)90258-3.

    [4]

    D. J. Benney and G. J. Roskes, Waves instabilities, Stud. Appl. Math., 48 (1969), 377-385.

    [5]

    C. Besse and C. H. Bruneau, Numerical study of elliptic-hyperbolic Davey-Stewartson system: dromions simulation and blow-up, Math. Mod. and Meth. in Appl. Sciences, 8 (1998), 1363-1386.doi: 10.1142/S0218202598000640.

    [6]

    C. Besse, N. Mauser and H.-P. Stimming, Numerical study of the Davey-Stewartson system, M2AN Math. Model. Numer. Anal., 38 (2004), 1035-1054.doi: 10.1051/m2an:2004049.

    [7]

    R. Carles, E. Dumas and C. Sparber, Geometric optics and instability for NLS and Davey-Stewartson systems, J. Eur. Math. Soc., 14 (2012), 1885-1921.doi: 10.4171/JEMS/350.

    [8]

    T. Cazenave, and F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, in Nonlinear Semigroups, Partial Differential Equations and Attractors (Washington, DC, 1987), 18-29, Lecture Notes in Math., 1394, Springer, Berlin, 1989.doi: 10.1007/BFb0086749.

    [9]

    R. Cipolatti, On the existence of standing waves for a Davey-Stewartson system, Comm. Partial Differential Equations, 17 (1992), 967-988.doi: 10.1080/03605309208820872.

    [10]

    R. Cipolatti, On the instability of ground states for a Davey-Stewartson system, Ann.Inst. H. Poincaré, Phys. Théor., 58 (1993), 85-104.

    [11]

    T. Colin, Rigorous derivation of the nonlinear Schrödinger equation and Davey-Stewartson systems from quadratic hyperbolic systems, Asymptotic Analysis, 31 (2002), 69-91.

    [12]

    T. Colin and D. Lannes, Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems, Disc. Cont. Dyn. Systems, 11 (2004), 83-100.doi: 10.3934/dcds.2004.11.83.

    [13]

    A. Davey and K. Stewartson, One three-dimensional packets of water waves, Proc. Roy. Soc. Lond. A, 338 (1974), 101-110.

    [14]

    V. D. Djordjevic and L. G. Redekopp, On two-dimensional packets of capillary-gravity waves, J. Fluid Mech., 79 (1977), 703-714.

    [15]

    T. Driscoll, A composite Runge-Kutta Method for the spectral Solution of semilinear PDEs, Journal of Computational Physics, 182 (2002), 357-367.doi: 10.1006/jcph.2002.7127.

    [16]

    A. Fokas, D. Pelinovsky and C. Sulem, Interaction of lumps with a line soliton for the Davey-Stewartson II equation, Physica D, 152-153 (2001), 189-198.doi: 10.1016/S0167-2789(01)00170-1.

    [17]

    J.-M. Ghidaglia and J.-C. Saut, On the initial value problem for the Davey-Stewartson systems, Nonlinearity, 3 (1990), 475-506.

    [18]

    J.-M. Ghidaglia and J.-C. Saut, Non existence of traveling wave solutions to nonelliptic nonlinear Schrödinger equations, J. Nonlinear Sci., 6 (1996), 139-145.doi: 10.1007/s003329900006.

    [19]

    J.-M. Ghidaglia and J.-C. Saut, On the Zakharov-Schulman equations, in Non-linear Dispersive Waves (L. Debnath Ed.), World Scientific, (1992), 83-97.

    [20]

    J.-M. Ghidaglia and J.-C. Saut, Nonelliptic Schrödinger evolution equations, J. Nonlinear Science, 3 (1993), 169-195.doi: 10.1007/BF02429863.

    [21]

    N. Hayashi, Local existence in time of solutions to the elliptic-hyperbolic Davey-Stewartson system without smallness condition on the data, J. Analyse Mathématique, 73 (1997), 133-164.doi: 10.1007/BF02788141.

    [22]

    N. Hayashi and H. Hirota, Local existence in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system in the usual Sobolev space, Proc. Edinburgh Math. Soc., 40 (1997), 563-581.doi: 10.1017/S0013091500024020.

    [23]

    N. Hayashi and H. Hirota, Global existence and asymptotic behavior in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system, Nonlinearity, 9 (1996), 1387-1409.doi: 10.1088/0951-7715/9/6/001.

    [24]

    P. Kevrekidis, A. R. Nahmod and C. Zeng, Radial standing and self-similar waves for the hyperbolic cubic NLS in 2D, Nonlinearity, 24 (2011), 1523-1538.doi: 10.1088/0951-7715/24/5/007.

    [25]

    O.M. Kiselev, Asymptotics of solutions of higher-dimensional integrable equations and their perturbations, J. of Mathematical Sciences, 138 (2006), 6067-6230.doi: 10.1007/s10958-006-0347-8.

    [26]

    C. Klein and R. Peter, Numerical study of blow-up in solutions to generalized Korteweg-de Vries equations, Preprint available at arXiv:1307.0603.}

    [27]

    C. Klein and R. Peter, Numerical study of blow-up in solutions to generalized Kadomtsev-Petviashvili equations, Discr. Cont. Dyn. Syst. B, 19 (2014), doi:10.3934/dcdsb.2014.19.1689doi: 10.3934/dcdsb.2014.19.1689.

    [28]

    C. Klein, C. Sparber and P. Markowich, Numerical study of fractional Nonlinear Schrödinger equations, Preprint available at arXiv:1404.6262. doi: 10.1098/rspa.2014.0364.

    [29]

    C. Klein and K. Roidot, Numerical study of shock formation in the dispersionless Kadomtsev-Petviashvili equation and dispersive regularizations, Phys. D, 265 (2013), 1-25.doi: 10.1016/j.physd.2013.09.005.

    [30]

    C. Klein and K. Roidot, Numerical study of the semiclassical limit of the Davey-Stewartson II equations, Prepint available at arXiv:1401.4745. doi: 10.1088/0951-7715/27/9/2177.

    [31]

    C. Klein and K. Roidot, Fourth order time-stepping for Kadomtsev-Petviashvili and Davey-Stewartson equations, SIAM Journal on Scientific Computing, 33 (2011).doi: 10.1137/100816663.

    [32]

    C. Klein, B. Muite and K. Roidot, Numerical Study of blowup in the Davey-Stewartson system, Discr. Cont. Dyn. Syst. B, 18 (2013), 1361-1387.doi: 10.3934/dcdsb.2013.18.1361.

    [33]

    C. Klein, Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation, ETNA, 29 (2008), 116-135.

    [34]

    J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optimization, 9 (1998), 112-147.doi: 10.1137/S1052623496303470.

    [35]

    D. Lannes, Water Waves: Mathematical Theory and Asymptotics, Mathematical Surveys and Monographs, volume 188, 2013, AMS, Providence.doi: 10.1090/surv/188.

    [36]

    H. Leblond, Electromagnetic waves in ferromagnets, J. Phys. A, 32 (1999), 7907-7932.doi: 10.1088/0305-4470/32/45/308.

    [37]

    F. Linares and G. Ponce, On the Davey-Stewartson systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 523-548.

    [38]

    M. McConnell, A. Fokas, and B. Pelloni, Localised coherent solutions of the DSI and DSII equations a numerical study, Mathematics and Computers in Simulation, 69 (2005), 424-438.doi: 10.1016/j.matcom.2005.03.007.

    [39]

    K. Roidot and N. Mauser, Numerical study of the transverse stability of NLS soliton solutions in several classes of NLS type equations, preprint, arXiv:1401.5349v1 (2014).

    [40]

    F. Merle and P. Raphaël, The blow-up dynamic and upper bound rate for critical nonlinear Schrödinger equation, Ann. of Math, 161 (2005), 157-222.doi: 10.4007/annals.2005.161.157.

    [41]

    S. L. Musher, A. M. Rubenchik and V. E. Zakharov, Hamiltonian approach to the description of nonlinear plasma phenomena, Phys. Rep., 129 (1985), 285-366.doi: 10.1016/0370-1573(85)90040-7.

    [42]

    A. Newell and J. V. Moloney, Nonlinear Optics, Addison-Wesley, 1992.

    [43]

    M. Ohta, Stability and instability of standing waves for the generalized Davey-Stewartson system, Diff. Int. Eq., 8 (1995), 1775-1788.

    [44]

    M. Ohta, Instability of standing waves for the generalized Davey-Stewartson system, Ann. Inst. H. Poincaré, Phys. Théor., 62 (1995), 69-80.

    [45]

    M. Ohta, Blow-up solutions and strong instability of standing waves for the generalized Davey-Stewartson system, Ann. Inst. H. Poincaré, Phys. Théor., 63 (1995), 111-117.

    [46]

    T. Ozawa, Exact blow-up solutions to the Cauchy problem for the Davey-Stewartson systems, Proc.Roy. Soc. London A, 436 (1992), 345-349.doi: 10.1098/rspa.1992.0022.

    [47]

    G. Papanicolaou, C. Sulem, P.-L. Sulem and X. P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary waves, Physica D, 72 (1994), 61-86.doi: 10.1016/0167-2789(94)90167-8.

    [48]

    D. Pelinovsky and C. Sulem, Embedded solitons of the Davey-Stewartson II equation, in CRM Proceedings and Lecture Notes (eds. C. Sulem and I. M. Sigal), Volume 27 (2001), 135-145.

    [49]

    D. E. Pelinovsky, E. A. Rouvinskaya, O. E. Kurkina and B. Deconincks, Short-wave transverse instability of line solitons of the two-dimensional hyperbolic nonlinear Schrödinger equation, Theoretical and Mathematical Physics, 179 (2014), 452-461.

    [50]

    P. A. Perry, Global well-posedness and long time asymptotics for the defocussing Davey-Stewartson II equation in $H^{1,1}(\R^2)$, preprint, arXiv:1110.5589v2, (2012).

    [51]

    F. Rousset and N. Tzvetkov, Transverse nonlinear instability for some Hamiltonian PDE's, J. Math. Pures Appl., 90 (2008), 550-590.doi: 10.1016/j.matpur.2008.07.004.

    [52]

    F. Rousset and N. Tzvetkov, Transverse nonlinear instability for two-dimensional dispersive models, Ann. IHP, Analyse Non Linéaire, 26 (2009), 477-496.doi: 10.1016/j.anihpc.2007.09.006.

    [53]

    F. Rousset and N. Tzvetkov, A simple criterion of transverse linear instability for solitary waves, Math. Res. Lett., 17 (2010), 157-169doi: 10.4310/MRL.2010.v17.n1.a12.

    [54]

    E. I. Schulman, On the integrability of equations of Davey-Stewartson type, Theor. Math. Phys., 56 (1983), 131-136.

    [55]

    C. Sulem, P.-L. Sulem and H. Frisch, Tracing complex singularities with spectral methods, J. Comp. Phys., 50 (1983), 138-161.doi: 10.1016/0021-9991(83)90045-1.

    [56]

    C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Springer Series in Mathematical Sciences Vol. 139, Springer Verlag, 1999.

    [57]

    L. Y. Sung, An inverse scattering transform for the Davey-Stewartson equations. I, J. Math. Anal. Appl., 183 (1994), 121-154.doi: 10.1006/jmaa.1994.1136.

    [58]

    L. Y. Sung, An inverse scattering transform for the Davey-Stewartson equations. II, J. Math. Anal. Appl., 183 (1994), 289-325.doi: 10.1006/jmaa.1994.1145.

    [59]

    L. Y. Sung, An inverse scattering transform for the Davey-Stewartson equations. III, J. Math. Anal. Appl., 183 (1994), 477-494.doi: 10.1006/jmaa.1994.1155.

    [60]

    L.-Y. Sung, Long-time decay of the solutions of the Davey-Stewartson II equations, J. Nonlinear Sci., 5 (1995), 433-452.doi: 10.1007/BF01212909.

    [61]

    V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 2 (1968), 190-194.

    [62]

    V. E. Zakharov and A. M. Rubenchik, Nonlinear interaction of high-frequency and low frequency waves, Prikl. Mat. Techn. Phys., (1972), 84-98.

    [63]

    V. E. Zakharov and E. I. Schulman, Degenerate dispersion laws, motion invariants and kinetic equations, Physica, 1D (1980), 192-202.doi: 10.1016/0167-2789(80)90011-1.

    [64]

    V. E. Zakharov and E. I. Schulman, Integrability of nonlinear systems and perturbation theory, in IWhat is Integrability? (V. E. Zakharov, ed.), (1991), 185-250, Springer Series on Nonlinear Dynamics, Springer-Verlag.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(142) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return