Citation: |
[1] |
L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275. |
[2] |
F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258.doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. |
[3] |
F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 437-442.doi: 10.1016/S0764-4442(00)00201-9. |
[4] |
J. L. Chern and C. S. Lin, Minimizers of Caffarelli-Kohn-Nirenberg inequalities on domains with the singularity on the boundary, Arch. Rational Mech. Anal., 197 (2010), 401-432.doi: 10.1007/s00205-009-0269-y. |
[5] |
H. Egnell, Positive solutions of semilinear equations in cones, Trans. Amer. Math. Soc., 330 (1992), 191-201.doi: 10.2307/2154160. |
[6] |
N. Ghoussoub and X. S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 767-793.doi: 10.1016/j.anihpc.2003.07.002. |
[7] |
N. Ghoussoub and F. Robert, Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth, IMRP Int. Math. Res. Pap., 21867 (2006), 1-85. |
[8] |
N. Ghoussoub and F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequalities, Geom. Funct. Anal., 16 (2006), 1201-1245.doi: 10.1007/s00039-006-0579-2. |
[9] |
J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear wave equations, Comm. Math. Phys., 123 (1989), 535-573. |
[10] |
N. Hayashi, E. I. Kaikina and P. I. Naumkin, Damped wave equation with super critical nonlinearities, Differential Integral Equations, 17 (2004), 637-652. |
[11] |
N. Hayashi, E. I. Kaikina and P. I. Naumkin, Damped wave equation in the subcritical case, J. Differential Equations, 207 (2004), 161-194.doi: 10.1016/j.jde.2004.06.018. |
[12] |
J. Hernández, F. J. Mancebo and J. M. Vega, Positive solutions for singular nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 41-62.doi: 10.1017/S030821050500065X. |
[13] |
T. Hosono and T. Ogawa, Large time behavior and $L^p$-$L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations, J. Differential Equations, 203 (2004), 82-118.doi: 10.1016/j.jde.2004.03.034. |
[14] |
C. H. Hsia, C. S. Lin and H. Wadade, Revisiting an idea of Brézis and Nirenberg, J. Funct. Anal., 259 (2010), 1816-1849.doi: 10.1016/j.jfa.2010.05.004. |
[15] |
R. Ikehata, Y. Miyaoka and T. Nakatake, Decay estimates of solutions for dissipative wave equations in $\mathbbR^N$ with lower power nonlinearities, J. Math. Soc. Japan, 56 (2004), 365-373.doi: 10.2969/jmsj/1191418635. |
[16] |
M. Ishiwata, M. Nakamura and H. Wadade, On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form, preprint. |
[17] |
S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term, J. Math. Soc. Japan, 47 (1995), 617-653.doi: 10.2969/jmsj/04740617. |
[18] |
T. T. Li and Y. Zhou, Breakdown of solutions to $\square u+u_t=| u| ^{1+\alpha}$, Discrete Contin. Dynam. Systems, 1 (1995), 503-520.doi: 10.3934/dcds.1995.1.503. |
[19] |
C. S. Lin, Interpolation inequalities with weights, Comm. Partial Differential Equations, 11 (1986), 1515-1538.doi: 10.1080/03605308608820473. |
[20] |
C. S. Lin and H. Wadade, Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary, Tohoku Mathematical Journal, to appear. doi: 10.2748/tmj/1332767341. |
[21] |
C. S. Lin and Z. Q. Wang, Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities, Proc. Amer. Math. Soc., 132 (2004), 1685-1691.doi: 10.1090/S0002-9939-04-07245-4. |
[22] |
A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci., 12 (1976/77), 169-189. |
[23] |
S. Nagayasu and H. Wadade, Characterization of the critical Sobolev space on the optimal singularity at the origin, J. Funct. Anal., 258 (2010), 3725-3757.doi: 10.1016/j.jfa.2010.02.015. |
[24] |
M. Nakamura, Small global solutions for nonlinear complex Ginzburg-Landau equations and nonlinear dissipative wave equations in Sobolev spaces, Reviews in Mathematical Physics, 23 (2011), 903-931.doi: 10.1142/S0129055X11004473. |
[25] |
M. Nakamura and T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order, J. Funct. Anal., 150 (1998), 364-380.doi: 10.1006/jfan.1997.3236. |
[26] |
M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., 231 (1999), 479-487.doi: 10.1007/PL00004737. |
[27] |
M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces, Publications of R.I.M.S., Kyoto University, 37 (2001), 255-293. |
[28] |
M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations, Math. Z., 214 (1993), 325-342.doi: 10.1007/BF02572407. |
[29] |
T. Narazaki, $L^p$-$L^q$ estimates for damped wave equations and their applications to semi-linear problem, J. Math. Soc. Japan, 56 (2004), 585-626.doi: 10.2969/jmsj/1191418647. |
[30] |
K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application, Math. Z., 244 (2003), 631-649. |
[31] | |
[32] |
J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, (1994), no. 7, 303ff., approx. 7 pp.doi: 10.1155/S1073792894000346. |
[33] |
R. S. Strichartz, A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J., 21 (1971/72), 841-842. |
[34] |
G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.doi: 10.1006/jdeq.2000.3933. |
[35] |
H. Yang and J. Chen, A result on Hardy-Sobolev critical elliptic equations with boundary singularities, Commun. Pure Appl. Anal., 6 (2007), 191-201.doi: 10.3934/cpaa.2007.6.191. |
[36] |
Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci. Paris Ser. I Math., 333 (2001), 109-114.doi: 10.1016/S0764-4442(01)01999-1. |