July  2015, 14(4): 1533-1545. doi: 10.3934/cpaa.2015.14.1533

Remarks on global solutions of dissipative wave equations with exponential nonlinear terms

1. 

Faculty of Science, Yamagata University, Kojirakawa-machi 1-4-12, Yamagata 990-8560

Received  July 2013 Revised  March 2014 Published  April 2015

The Cauchy problem for dissipative wave equations with exponential type nonlinear terms is considered in the energy space in two spatial dimensions. The nonlinear terms have a singularity at the origin, and global solutions are shown based on the Gagliardo-Nirenberg type inequality.
Citation: Makoto Nakamura. Remarks on global solutions of dissipative wave equations with exponential nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1533-1545. doi: 10.3934/cpaa.2015.14.1533
References:
[1]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, \emph{Compositio Math.}, 53 (1984), 259.   Google Scholar

[2]

F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions,, \emph{Comm. Pure Appl. Math.}, 54 (2001), 229.  doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.  Google Scholar

[3]

F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities,, \emph{C. R. Acad. Sci. Paris S\'er. I Math.}, 330 (2000), 437.  doi: 10.1016/S0764-4442(00)00201-9.  Google Scholar

[4]

J. L. Chern and C. S. Lin, Minimizers of Caffarelli-Kohn-Nirenberg inequalities on domains with the singularity on the boundary,, \emph{Arch. Rational Mech. Anal.}, 197 (2010), 401.  doi: 10.1007/s00205-009-0269-y.  Google Scholar

[5]

H. Egnell, Positive solutions of semilinear equations in cones,, \emph{Trans. Amer. Math. Soc.}, 330 (1992), 191.  doi: 10.2307/2154160.  Google Scholar

[6]

N. Ghoussoub and X. S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 21 (2004), 767.  doi: 10.1016/j.anihpc.2003.07.002.  Google Scholar

[7]

N. Ghoussoub and F. Robert, Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth,, \emph{IMRP Int. Math. Res. Pap.}, 21867 (2006), 1.   Google Scholar

[8]

N. Ghoussoub and F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequalities,, \emph{Geom. Funct. Anal.}, 16 (2006), 1201.  doi: 10.1007/s00039-006-0579-2.  Google Scholar

[9]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear wave equations,, \emph{Comm. Math. Phys.}, 123 (1989), 535.   Google Scholar

[10]

N. Hayashi, E. I. Kaikina and P. I. Naumkin, Damped wave equation with super critical nonlinearities,, \emph{Differential Integral Equations}, 17 (2004), 637.   Google Scholar

[11]

N. Hayashi, E. I. Kaikina and P. I. Naumkin, Damped wave equation in the subcritical case,, \emph{J. Differential Equations}, 207 (2004), 161.  doi: 10.1016/j.jde.2004.06.018.  Google Scholar

[12]

J. Hernández, F. J. Mancebo and J. M. Vega, Positive solutions for singular nonlinear elliptic equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 137 (2007), 41.  doi: 10.1017/S030821050500065X.  Google Scholar

[13]

T. Hosono and T. Ogawa, Large time behavior and $L^p$-$L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations,, \emph{J. Differential Equations}, 203 (2004), 82.  doi: 10.1016/j.jde.2004.03.034.  Google Scholar

[14]

C. H. Hsia, C. S. Lin and H. Wadade, Revisiting an idea of Brézis and Nirenberg,, \emph{J. Funct. Anal.}, 259 (2010), 1816.  doi: 10.1016/j.jfa.2010.05.004.  Google Scholar

[15]

R. Ikehata, Y. Miyaoka and T. Nakatake, Decay estimates of solutions for dissipative wave equations in $\mathbbR^N$ with lower power nonlinearities,, \emph{J. Math. Soc. Japan}, 56 (2004), 365.  doi: 10.2969/jmsj/1191418635.  Google Scholar

[16]

M. Ishiwata, M. Nakamura and H. Wadade, On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form,, preprint., ().   Google Scholar

[17]

S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term,, \emph{J. Math. Soc. Japan}, 47 (1995), 617.  doi: 10.2969/jmsj/04740617.  Google Scholar

[18]

T. T. Li and Y. Zhou, Breakdown of solutions to $\square u+u_t=| u| ^{1+\alpha}$,, \emph{Discrete Contin. Dynam. Systems}, 1 (1995), 503.  doi: 10.3934/dcds.1995.1.503.  Google Scholar

[19]

C. S. Lin, Interpolation inequalities with weights,, \emph{Comm. Partial Differential Equations}, 11 (1986), 1515.  doi: 10.1080/03605308608820473.  Google Scholar

[20]

C. S. Lin and H. Wadade, Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary,, \emph{Tohoku Mathematical Journal}, ().  doi: 10.2748/tmj/1332767341.  Google Scholar

[21]

C. S. Lin and Z. Q. Wang, Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities,, \emph{Proc. Amer. Math. Soc.}, 132 (2004), 1685.  doi: 10.1090/S0002-9939-04-07245-4.  Google Scholar

[22]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, \emph{Publ. Res. Inst. Math. Sci.}, 12 (): 169.   Google Scholar

[23]

S. Nagayasu and H. Wadade, Characterization of the critical Sobolev space on the optimal singularity at the origin,, \emph{J. Funct. Anal.}, 258 (2010), 3725.  doi: 10.1016/j.jfa.2010.02.015.  Google Scholar

[24]

M. Nakamura, Small global solutions for nonlinear complex Ginzburg-Landau equations and nonlinear dissipative wave equations in Sobolev spaces,, \emph{Reviews in Mathematical Physics}, 23 (2011), 903.  doi: 10.1142/S0129055X11004473.  Google Scholar

[25]

M. Nakamura and T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order,, \emph{J. Funct. Anal.}, 150 (1998), 364.  doi: 10.1006/jfan.1997.3236.  Google Scholar

[26]

M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth,, \emph{Math. Z.}, 231 (1999), 479.  doi: 10.1007/PL00004737.  Google Scholar

[27]

M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces,, \emph{Publications of R.I.M.S., 37 (2001), 255.   Google Scholar

[28]

M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations,, \emph{Math. Z.}, 214 (1993), 325.  doi: 10.1007/BF02572407.  Google Scholar

[29]

T. Narazaki, $L^p$-$L^q$ estimates for damped wave equations and their applications to semi-linear problem,, \emph{J. Math. Soc. Japan}, 56 (2004), 585.  doi: 10.2969/jmsj/1191418647.  Google Scholar

[30]

K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application,, \emph{Math. Z.}, 244 (2003), 631.   Google Scholar

[31]

K. Nishihara, $\ $, Sugaku, 62 (2010), 20.   Google Scholar

[32]

J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth,, \emph{Internat. Math. Res. Notices}, (1994).  doi: 10.1155/S1073792894000346.  Google Scholar

[33]

R. S. Strichartz, A note on Trudinger's extension of Sobolev's inequalities,, \emph{Indiana Univ. Math. J.}, 21 (): 841.   Google Scholar

[34]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, \emph{J. Differential Equations}, 174 (2001), 464.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[35]

H. Yang and J. Chen, A result on Hardy-Sobolev critical elliptic equations with boundary singularities,, \emph{Commun. Pure Appl. Anal.}, 6 (2007), 191.  doi: 10.3934/cpaa.2007.6.191.  Google Scholar

[36]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case,, \emph{C. R. Acad. Sci. Paris Ser. I Math.}, 333 (2001), 109.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

show all references

References:
[1]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, \emph{Compositio Math.}, 53 (1984), 259.   Google Scholar

[2]

F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions,, \emph{Comm. Pure Appl. Math.}, 54 (2001), 229.  doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.  Google Scholar

[3]

F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities,, \emph{C. R. Acad. Sci. Paris S\'er. I Math.}, 330 (2000), 437.  doi: 10.1016/S0764-4442(00)00201-9.  Google Scholar

[4]

J. L. Chern and C. S. Lin, Minimizers of Caffarelli-Kohn-Nirenberg inequalities on domains with the singularity on the boundary,, \emph{Arch. Rational Mech. Anal.}, 197 (2010), 401.  doi: 10.1007/s00205-009-0269-y.  Google Scholar

[5]

H. Egnell, Positive solutions of semilinear equations in cones,, \emph{Trans. Amer. Math. Soc.}, 330 (1992), 191.  doi: 10.2307/2154160.  Google Scholar

[6]

N. Ghoussoub and X. S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 21 (2004), 767.  doi: 10.1016/j.anihpc.2003.07.002.  Google Scholar

[7]

N. Ghoussoub and F. Robert, Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth,, \emph{IMRP Int. Math. Res. Pap.}, 21867 (2006), 1.   Google Scholar

[8]

N. Ghoussoub and F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequalities,, \emph{Geom. Funct. Anal.}, 16 (2006), 1201.  doi: 10.1007/s00039-006-0579-2.  Google Scholar

[9]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear wave equations,, \emph{Comm. Math. Phys.}, 123 (1989), 535.   Google Scholar

[10]

N. Hayashi, E. I. Kaikina and P. I. Naumkin, Damped wave equation with super critical nonlinearities,, \emph{Differential Integral Equations}, 17 (2004), 637.   Google Scholar

[11]

N. Hayashi, E. I. Kaikina and P. I. Naumkin, Damped wave equation in the subcritical case,, \emph{J. Differential Equations}, 207 (2004), 161.  doi: 10.1016/j.jde.2004.06.018.  Google Scholar

[12]

J. Hernández, F. J. Mancebo and J. M. Vega, Positive solutions for singular nonlinear elliptic equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 137 (2007), 41.  doi: 10.1017/S030821050500065X.  Google Scholar

[13]

T. Hosono and T. Ogawa, Large time behavior and $L^p$-$L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations,, \emph{J. Differential Equations}, 203 (2004), 82.  doi: 10.1016/j.jde.2004.03.034.  Google Scholar

[14]

C. H. Hsia, C. S. Lin and H. Wadade, Revisiting an idea of Brézis and Nirenberg,, \emph{J. Funct. Anal.}, 259 (2010), 1816.  doi: 10.1016/j.jfa.2010.05.004.  Google Scholar

[15]

R. Ikehata, Y. Miyaoka and T. Nakatake, Decay estimates of solutions for dissipative wave equations in $\mathbbR^N$ with lower power nonlinearities,, \emph{J. Math. Soc. Japan}, 56 (2004), 365.  doi: 10.2969/jmsj/1191418635.  Google Scholar

[16]

M. Ishiwata, M. Nakamura and H. Wadade, On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form,, preprint., ().   Google Scholar

[17]

S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term,, \emph{J. Math. Soc. Japan}, 47 (1995), 617.  doi: 10.2969/jmsj/04740617.  Google Scholar

[18]

T. T. Li and Y. Zhou, Breakdown of solutions to $\square u+u_t=| u| ^{1+\alpha}$,, \emph{Discrete Contin. Dynam. Systems}, 1 (1995), 503.  doi: 10.3934/dcds.1995.1.503.  Google Scholar

[19]

C. S. Lin, Interpolation inequalities with weights,, \emph{Comm. Partial Differential Equations}, 11 (1986), 1515.  doi: 10.1080/03605308608820473.  Google Scholar

[20]

C. S. Lin and H. Wadade, Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary,, \emph{Tohoku Mathematical Journal}, ().  doi: 10.2748/tmj/1332767341.  Google Scholar

[21]

C. S. Lin and Z. Q. Wang, Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities,, \emph{Proc. Amer. Math. Soc.}, 132 (2004), 1685.  doi: 10.1090/S0002-9939-04-07245-4.  Google Scholar

[22]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, \emph{Publ. Res. Inst. Math. Sci.}, 12 (): 169.   Google Scholar

[23]

S. Nagayasu and H. Wadade, Characterization of the critical Sobolev space on the optimal singularity at the origin,, \emph{J. Funct. Anal.}, 258 (2010), 3725.  doi: 10.1016/j.jfa.2010.02.015.  Google Scholar

[24]

M. Nakamura, Small global solutions for nonlinear complex Ginzburg-Landau equations and nonlinear dissipative wave equations in Sobolev spaces,, \emph{Reviews in Mathematical Physics}, 23 (2011), 903.  doi: 10.1142/S0129055X11004473.  Google Scholar

[25]

M. Nakamura and T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order,, \emph{J. Funct. Anal.}, 150 (1998), 364.  doi: 10.1006/jfan.1997.3236.  Google Scholar

[26]

M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth,, \emph{Math. Z.}, 231 (1999), 479.  doi: 10.1007/PL00004737.  Google Scholar

[27]

M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces,, \emph{Publications of R.I.M.S., 37 (2001), 255.   Google Scholar

[28]

M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations,, \emph{Math. Z.}, 214 (1993), 325.  doi: 10.1007/BF02572407.  Google Scholar

[29]

T. Narazaki, $L^p$-$L^q$ estimates for damped wave equations and their applications to semi-linear problem,, \emph{J. Math. Soc. Japan}, 56 (2004), 585.  doi: 10.2969/jmsj/1191418647.  Google Scholar

[30]

K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application,, \emph{Math. Z.}, 244 (2003), 631.   Google Scholar

[31]

K. Nishihara, $\ $, Sugaku, 62 (2010), 20.   Google Scholar

[32]

J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth,, \emph{Internat. Math. Res. Notices}, (1994).  doi: 10.1155/S1073792894000346.  Google Scholar

[33]

R. S. Strichartz, A note on Trudinger's extension of Sobolev's inequalities,, \emph{Indiana Univ. Math. J.}, 21 (): 841.   Google Scholar

[34]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, \emph{J. Differential Equations}, 174 (2001), 464.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[35]

H. Yang and J. Chen, A result on Hardy-Sobolev critical elliptic equations with boundary singularities,, \emph{Commun. Pure Appl. Anal.}, 6 (2007), 191.  doi: 10.3934/cpaa.2007.6.191.  Google Scholar

[36]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case,, \emph{C. R. Acad. Sci. Paris Ser. I Math.}, 333 (2001), 109.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

[1]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[11]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[12]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[15]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[16]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[20]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]