• Previous Article
    Global existence for the defocusing nonlinear Schrödinger equations with limit periodic initial data
  • CPAA Home
  • This Issue
  • Next Article
    Remarks on global solutions of dissipative wave equations with exponential nonlinear terms
July  2015, 14(4): 1547-1561. doi: 10.3934/cpaa.2015.14.1547

Remarks on the full dispersion Davey-Stewartson systems

1. 

Laboratoire de Mathématiques, Université Paris-Sud, Bât. 430, 91405 Orsay Cedex, France

2. 

UMR de Mathématiques, Université de Paris-Sud, Bâtiment 425, P.O. Box 91405, Orsay

Received  October 2013 Revised  May 2014 Published  April 2015

We consider the Cauchy problem for the Full Dispersion Davey-Stewartson systems derived in [23] for the modeling of surface water waves in the modulation regime and we investigate some of their mathematical properties, emphasizing in particular the differences with the classical Davey-Stewartson systems.
Citation: Caroline Obrecht, J.-C. Saut. Remarks on the full dispersion Davey-Stewartson systems. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1547-1561. doi: 10.3934/cpaa.2015.14.1547
References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering,, Cambridge University Press, (1991).  doi: 10.1017/CBO9780511623998.  Google Scholar

[2]

M. J. Ablowitz and H. Segur, On the evolution of packets of water waves,, \emph{J. Fluid Mech.}, 92 (1979), 691.  doi: 10.1017/S0022112079000835.  Google Scholar

[3]

D. J. Benney and G. J. Roskes, Waves instabilities,, \emph{Stud. Appl. Math.}, 48 (1969), 377.   Google Scholar

[4]

C. Besse and C. H. Bruneau, Numerical study of elliptic-hyperbolic Davey-Stewartson system: dromions simulation and blow-up,, \emph{Mathematical Models and Methods in Applied Sciences}, 8 (1998), 1363.  doi: 10.1142/S0218202598000640.  Google Scholar

[5]

T. Colin, Rigorous derivation of the nonlinear Schrödinger equation and Davey-Stewartson system for quadratic hyperbolic systems,, \emph{Asymptotic Analysis}, 31 (2002), 69.   Google Scholar

[6]

W. Craig, U. Schanz and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system,, \emph{Ann. Inst. H. Poincar\'e, 14 (1997), 615.  doi: 10.1016/S0294-1449(97)80128-X.  Google Scholar

[7]

W. Craig, C. Sulem and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach,, \emph{Nonlinearity}, 5 (1992), 497.   Google Scholar

[8]

W. Craig and C. Sulem, Numerical simulation of gravity waves,, \emph{J. Comput. Phys.}, 108 (1993), 73.  doi: 10.1006/jcph.1993.1164.  Google Scholar

[9]

A. Davey and K. Stewartson, One three-dimensional packets of water waves,, \emph{Proc. Roy. Soc. Lond. A}, 338 (1974), 101.   Google Scholar

[10]

V. D. Djordjevic and L. G. Redekopp, On two-dimensional packets of capillary-gravity waves,, \emph{J. Fluid Mech.}, 79 (1977), 703.   Google Scholar

[11]

J.-M. Ghidaglia and J.-C. Saut, On the initial value problem for the Davey-Stewartson systems,, \emph{Nonlinearity}, 3 (1990), 475.   Google Scholar

[12]

J.-M. Ghidaglia and J.-C. Saut, Non existence of traveling wave solutions to nonelliptic nonlinear Schrödinger equations,, \emph{J. Nonlinear Sci.}, 6 (1996), 139.  doi: 10.1007/s003329900006.  Google Scholar

[13]

J.-M. Ghidaglia and J.-C. Saut, On the Zakharov-Schulman equations,, in \emph{Nonlinear Dispersive Waves} (L. Debnath Ed.), (1992), 83.   Google Scholar

[14]

Z. Guo, L. Peng and B. Wang, Decay estimates for a class of wave equations,, \emph{J. Funct. Analysis}, 254 (2008), 1642.  doi: 10.1016/j.jfa.2007.12.010.  Google Scholar

[15]

Z. Guo and Y. Wang 2, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations,, arXiv:1007.4299v3., ().  doi: 10.1007/s11854-014-0025-6.  Google Scholar

[16]

N. Hayashi and H. Hirata, Local existence in time of small solutions to the elliptic- hyperbolic Davey-Stewartson system in the usual Sobolev space,, \emph{Proc. Edinburgh Math. Soc.}, 40 (1997), 563.  doi: 10.1017/S0013091500024020.  Google Scholar

[17]

N. Hayashi and H. Hirata, Global existence and scattering of small solutions to the elliptic-hyperbolic Davey-Stewartson system,, \emph{Nonlinearity}, 9 (1996), 1387.  doi: 10.1088/0951-7715/9/6/001.  Google Scholar

[18]

A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension,, arXiv:1209.4943v1., ().   Google Scholar

[19]

C. Klein, B. Muite and K. Roidot, Numerical study of the blow-up in the Davey-Stewartson system,, \emph{Discr. Cont. Dyn. Syst. B}, 18 (2013), 1361.  doi: 10.3934/dcdsb.2013.18.1361.  Google Scholar

[20]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for Davey-Stewartson II type systems,, submitted., ().   Google Scholar

[21]

C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations,, submitted., ().   Google Scholar

[22]

Joseph Louis de Lagrange, Mémoire sur la théorie du mouvement des fluides,, Oeuvres compl\`etes, (1781), 695.   Google Scholar

[23]

D. Lannes, Water Waves : Mathematical Theory and Asymptotics,, Mathematical Surveys and Monographs, (2013).  doi: 10.1090/surv/188.  Google Scholar

[24]

David Lannes, A stability criterion for two-dimensional interfaces and applications,, \emph{Arch. Ration. Mech. Anal.}, 208 (2013), 481.  doi: 10.1007/s00205-012-0604-6.  Google Scholar

[25]

D. Lannes and J.-C. Saut, Remarks on the full dispersion Kadomtsev-Petviashvli equation,, \emph{Kinematics and Related Models}, 6 (2013).  doi: 10.3934/krm.2013.6.989.  Google Scholar

[26]

F. Linares and G. Ponce, On the Davey-Stewartson systems,, \emph{Ann. Inst. H. Poincar\' e Anal. Non Lin\' eaire}, 10 (1993), 523.   Google Scholar

[27]

C. Obrecht, In preparation., $\ $, ().   Google Scholar

[28]

C. Obrecht and K. Roidot, In preparation., $\ $, ().   Google Scholar

[29]

T. Ozawa, Exact blow-up solutions to the Cauchy problem for the Davey-Stewartson systems,, \emph{Proc. Roy. Soc. London A}, 436 (1992), 345.  doi: 10.1098/rspa.1992.0022.  Google Scholar

[30]

G. C. Papanicolaou, C. Sulem, P.-L. Sulem and X. P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves,, \emph{Physica D}, 72 (1994), 61.  doi: 10.1016/0167-2789(94)90167-8.  Google Scholar

[31]

P. A. Perry, Global well-posedness and long time asymptotics for the defocussing Davey-Stewartson II equation in $H^{1,1}(\R^2)$,, arXiv:1110.5589v2., ().   Google Scholar

[32]

G. Ponce and J.-C. Saut, Well-posedness for the Benney-Roskes-Zakharov- Rubenchik system,, \emph{Discrete Cont. Dynamical Systems}, 13 (2005), 811.  doi: 10.3934/dcds.2005.13.811.  Google Scholar

[33]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation,, Springer-Verlag, 139 (1999).   Google Scholar

[34]

L. Y. Sung, Long time decay of the solutions of the Davey-Stewartson II equations,, \emph{J. Nonlinear Sci.}, 5 (1995), 43.  doi: 10.1007/BF01212909.  Google Scholar

[35]

N. Totz, A justification of the modulation approximation to the 3D full water wave problem,, \emph{Comm. Math. Phys.}, 335 (2015), 369.  doi: 10.1007/s00220-014-2259-7.  Google Scholar

[36]

N. Totz and S. Wu, A rigorous justification of the modulation approximation to the 2D full water wave problem,, \emph{Comm. Math. Phys.}, 310 (2012), 817.  doi: 10.1007/s00220-012-1422-2.  Google Scholar

[37]

V. E. Zakharov, Weakly nonlinear waves on surface of ideal finite depth fluid,, \emph{Amer. Math. Soc. Transl. Ser. 2}, 182 (1998), 167.   Google Scholar

[38]

V. E. Zakharov and A. M. Rubenchik, Nonlinear interaction of high-frequency and low frequency waves,, \emph{Prikl. Mat. Techn. Phys.}, (1972), 84.   Google Scholar

[39]

V. E. Zakharov and E. I Schulman, Degenerate conservation laws, motion invariants and kinetic equations,, \emph{Physica}, 1D (1980), 192.  doi: 10.1016/0167-2789(80)90011-1.  Google Scholar

show all references

References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering,, Cambridge University Press, (1991).  doi: 10.1017/CBO9780511623998.  Google Scholar

[2]

M. J. Ablowitz and H. Segur, On the evolution of packets of water waves,, \emph{J. Fluid Mech.}, 92 (1979), 691.  doi: 10.1017/S0022112079000835.  Google Scholar

[3]

D. J. Benney and G. J. Roskes, Waves instabilities,, \emph{Stud. Appl. Math.}, 48 (1969), 377.   Google Scholar

[4]

C. Besse and C. H. Bruneau, Numerical study of elliptic-hyperbolic Davey-Stewartson system: dromions simulation and blow-up,, \emph{Mathematical Models and Methods in Applied Sciences}, 8 (1998), 1363.  doi: 10.1142/S0218202598000640.  Google Scholar

[5]

T. Colin, Rigorous derivation of the nonlinear Schrödinger equation and Davey-Stewartson system for quadratic hyperbolic systems,, \emph{Asymptotic Analysis}, 31 (2002), 69.   Google Scholar

[6]

W. Craig, U. Schanz and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system,, \emph{Ann. Inst. H. Poincar\'e, 14 (1997), 615.  doi: 10.1016/S0294-1449(97)80128-X.  Google Scholar

[7]

W. Craig, C. Sulem and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach,, \emph{Nonlinearity}, 5 (1992), 497.   Google Scholar

[8]

W. Craig and C. Sulem, Numerical simulation of gravity waves,, \emph{J. Comput. Phys.}, 108 (1993), 73.  doi: 10.1006/jcph.1993.1164.  Google Scholar

[9]

A. Davey and K. Stewartson, One three-dimensional packets of water waves,, \emph{Proc. Roy. Soc. Lond. A}, 338 (1974), 101.   Google Scholar

[10]

V. D. Djordjevic and L. G. Redekopp, On two-dimensional packets of capillary-gravity waves,, \emph{J. Fluid Mech.}, 79 (1977), 703.   Google Scholar

[11]

J.-M. Ghidaglia and J.-C. Saut, On the initial value problem for the Davey-Stewartson systems,, \emph{Nonlinearity}, 3 (1990), 475.   Google Scholar

[12]

J.-M. Ghidaglia and J.-C. Saut, Non existence of traveling wave solutions to nonelliptic nonlinear Schrödinger equations,, \emph{J. Nonlinear Sci.}, 6 (1996), 139.  doi: 10.1007/s003329900006.  Google Scholar

[13]

J.-M. Ghidaglia and J.-C. Saut, On the Zakharov-Schulman equations,, in \emph{Nonlinear Dispersive Waves} (L. Debnath Ed.), (1992), 83.   Google Scholar

[14]

Z. Guo, L. Peng and B. Wang, Decay estimates for a class of wave equations,, \emph{J. Funct. Analysis}, 254 (2008), 1642.  doi: 10.1016/j.jfa.2007.12.010.  Google Scholar

[15]

Z. Guo and Y. Wang 2, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations,, arXiv:1007.4299v3., ().  doi: 10.1007/s11854-014-0025-6.  Google Scholar

[16]

N. Hayashi and H. Hirata, Local existence in time of small solutions to the elliptic- hyperbolic Davey-Stewartson system in the usual Sobolev space,, \emph{Proc. Edinburgh Math. Soc.}, 40 (1997), 563.  doi: 10.1017/S0013091500024020.  Google Scholar

[17]

N. Hayashi and H. Hirata, Global existence and scattering of small solutions to the elliptic-hyperbolic Davey-Stewartson system,, \emph{Nonlinearity}, 9 (1996), 1387.  doi: 10.1088/0951-7715/9/6/001.  Google Scholar

[18]

A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension,, arXiv:1209.4943v1., ().   Google Scholar

[19]

C. Klein, B. Muite and K. Roidot, Numerical study of the blow-up in the Davey-Stewartson system,, \emph{Discr. Cont. Dyn. Syst. B}, 18 (2013), 1361.  doi: 10.3934/dcdsb.2013.18.1361.  Google Scholar

[20]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for Davey-Stewartson II type systems,, submitted., ().   Google Scholar

[21]

C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations,, submitted., ().   Google Scholar

[22]

Joseph Louis de Lagrange, Mémoire sur la théorie du mouvement des fluides,, Oeuvres compl\`etes, (1781), 695.   Google Scholar

[23]

D. Lannes, Water Waves : Mathematical Theory and Asymptotics,, Mathematical Surveys and Monographs, (2013).  doi: 10.1090/surv/188.  Google Scholar

[24]

David Lannes, A stability criterion for two-dimensional interfaces and applications,, \emph{Arch. Ration. Mech. Anal.}, 208 (2013), 481.  doi: 10.1007/s00205-012-0604-6.  Google Scholar

[25]

D. Lannes and J.-C. Saut, Remarks on the full dispersion Kadomtsev-Petviashvli equation,, \emph{Kinematics and Related Models}, 6 (2013).  doi: 10.3934/krm.2013.6.989.  Google Scholar

[26]

F. Linares and G. Ponce, On the Davey-Stewartson systems,, \emph{Ann. Inst. H. Poincar\' e Anal. Non Lin\' eaire}, 10 (1993), 523.   Google Scholar

[27]

C. Obrecht, In preparation., $\ $, ().   Google Scholar

[28]

C. Obrecht and K. Roidot, In preparation., $\ $, ().   Google Scholar

[29]

T. Ozawa, Exact blow-up solutions to the Cauchy problem for the Davey-Stewartson systems,, \emph{Proc. Roy. Soc. London A}, 436 (1992), 345.  doi: 10.1098/rspa.1992.0022.  Google Scholar

[30]

G. C. Papanicolaou, C. Sulem, P.-L. Sulem and X. P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves,, \emph{Physica D}, 72 (1994), 61.  doi: 10.1016/0167-2789(94)90167-8.  Google Scholar

[31]

P. A. Perry, Global well-posedness and long time asymptotics for the defocussing Davey-Stewartson II equation in $H^{1,1}(\R^2)$,, arXiv:1110.5589v2., ().   Google Scholar

[32]

G. Ponce and J.-C. Saut, Well-posedness for the Benney-Roskes-Zakharov- Rubenchik system,, \emph{Discrete Cont. Dynamical Systems}, 13 (2005), 811.  doi: 10.3934/dcds.2005.13.811.  Google Scholar

[33]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation,, Springer-Verlag, 139 (1999).   Google Scholar

[34]

L. Y. Sung, Long time decay of the solutions of the Davey-Stewartson II equations,, \emph{J. Nonlinear Sci.}, 5 (1995), 43.  doi: 10.1007/BF01212909.  Google Scholar

[35]

N. Totz, A justification of the modulation approximation to the 3D full water wave problem,, \emph{Comm. Math. Phys.}, 335 (2015), 369.  doi: 10.1007/s00220-014-2259-7.  Google Scholar

[36]

N. Totz and S. Wu, A rigorous justification of the modulation approximation to the 2D full water wave problem,, \emph{Comm. Math. Phys.}, 310 (2012), 817.  doi: 10.1007/s00220-012-1422-2.  Google Scholar

[37]

V. E. Zakharov, Weakly nonlinear waves on surface of ideal finite depth fluid,, \emph{Amer. Math. Soc. Transl. Ser. 2}, 182 (1998), 167.   Google Scholar

[38]

V. E. Zakharov and A. M. Rubenchik, Nonlinear interaction of high-frequency and low frequency waves,, \emph{Prikl. Mat. Techn. Phys.}, (1972), 84.   Google Scholar

[39]

V. E. Zakharov and E. I Schulman, Degenerate conservation laws, motion invariants and kinetic equations,, \emph{Physica}, 1D (1980), 192.  doi: 10.1016/0167-2789(80)90011-1.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[4]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[5]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[9]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[16]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[17]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]