July  2015, 14(4): 1563-1580. doi: 10.3934/cpaa.2015.14.1563

Global existence for the defocusing nonlinear Schrödinger equations with limit periodic initial data

1. 

School of Mathematics, The University of Edinburgh and The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom

Received  July 2014 Revised  December 2014 Published  April 2014

We consider the Cauchy problem for the defocusing nonlinear Schrödinger equations (NLS) on the real line with a special subclass of almost periodic functions as initial data. In particular, we prove global existence of solutions to NLS with limit periodic functions as initial data under some regularity assumption.
Citation: Tadahiro Oh. Global existence for the defocusing nonlinear Schrödinger equations with limit periodic initial data. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1563-1580. doi: 10.3934/cpaa.2015.14.1563
References:
[1]

A. Besicovitch, Almost Periodic Functions,, Dover Publications, (1955).   Google Scholar

[2]

H. Bohr, Zur theorie der fast periodischen funktionen. I. Eine verallgemeinerung der theorie der fourierreihen,, \emph{Acta Math.}, 45 (1925), 29.  doi: 10.1007/BF02395468.  Google Scholar

[3]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations,, \emph{Geom. Funct. Anal.}, 3 (1993), 107.  doi: 10.1007/BF01896020.  Google Scholar

[4]

J. Bourgain, A remark on normal forms and the "$I$-method'' for periodic NLS,, \emph{J. Anal. Math.}, 94 (2004), 125.  doi: 10.1007/BF02789044.  Google Scholar

[5]

A. Boutet de Monvel and I. Egorova, On solutions of nonlinear Schrödinger equations with Cantor-type spectrum,, \emph{J. Anal. Math.}, 72 (1997), 1.  doi: 10.1007/BF02843151.  Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011).   Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[8]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbbR$ and $\mathbbT$,, \emph{J. Amer. Math. Soc.}, 16 (2003), 705.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[9]

C. Corduneanu, Almost Periodic Functions,, With the collaboration of N. Gheorghiu and V. Barbu. Translated from the Romanian by Gitta Bernstein and Eugene Tomer. Interscience Tracts in Pure and Applied Mathematics, (1968).   Google Scholar

[10]

D. Damanik and M. Goldstein, On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data,, preprint, ().   Google Scholar

[11]

I. Egorova, The Cauchy problem for the KdV equation with almost periodic initial data whose spectrum is nowhere dense,, in \emph{Spectral Operator Theory and Related Topics, (1994), 181.   Google Scholar

[12]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. III. Special theories in dimensions 1, 2 and 3,, \emph{Ann. Inst. H. Poincar\'e Sect. A (N.S.)}, 28 (1978), 287.   Google Scholar

[13]

Y. Katznelson, An Introduction to Harmonic Analysis,, Third edition. Cambridge Mathematical Library. Cambridge University Press, (2004).  doi: 10.1017/CBO9781139165372.  Google Scholar

[14]

T. Ogawa and Y. Tsutsumi, Blow-up of solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary condition,, \emph{Functional-analytic Methods for Partial Differential Equations} (Tokyo, (1989), 236.  doi: 10.1007/BFb0084910.  Google Scholar

[15]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity,, \emph{Proc. Amer. Math. Soc.}, 111 (1991), 487.  doi: 10.2307/2048340.  Google Scholar

[16]

T. Oh, On nonlinear Schrödinger equations with almost periodic initial data,, \emph{SIAM J. Math. Anal.}, 47 (2015), 1253.  doi: 10.1137/140973384.  Google Scholar

[17]

T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis,, CBMS Regional Conference Series in Mathematics, (2006).   Google Scholar

[18]

K. Tsugawa, Local well-posedness of the KdV equation with quasi-periodic initial data,, \emph{SIAM J. Math. Anal.}, 44 (2012), 3412.  doi: 10.1137/110849973.  Google Scholar

[19]

Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups,, \emph{ Funkcial. Ekvac.}, 30 (1987), 115.   Google Scholar

show all references

References:
[1]

A. Besicovitch, Almost Periodic Functions,, Dover Publications, (1955).   Google Scholar

[2]

H. Bohr, Zur theorie der fast periodischen funktionen. I. Eine verallgemeinerung der theorie der fourierreihen,, \emph{Acta Math.}, 45 (1925), 29.  doi: 10.1007/BF02395468.  Google Scholar

[3]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations,, \emph{Geom. Funct. Anal.}, 3 (1993), 107.  doi: 10.1007/BF01896020.  Google Scholar

[4]

J. Bourgain, A remark on normal forms and the "$I$-method'' for periodic NLS,, \emph{J. Anal. Math.}, 94 (2004), 125.  doi: 10.1007/BF02789044.  Google Scholar

[5]

A. Boutet de Monvel and I. Egorova, On solutions of nonlinear Schrödinger equations with Cantor-type spectrum,, \emph{J. Anal. Math.}, 72 (1997), 1.  doi: 10.1007/BF02843151.  Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011).   Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[8]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbbR$ and $\mathbbT$,, \emph{J. Amer. Math. Soc.}, 16 (2003), 705.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[9]

C. Corduneanu, Almost Periodic Functions,, With the collaboration of N. Gheorghiu and V. Barbu. Translated from the Romanian by Gitta Bernstein and Eugene Tomer. Interscience Tracts in Pure and Applied Mathematics, (1968).   Google Scholar

[10]

D. Damanik and M. Goldstein, On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data,, preprint, ().   Google Scholar

[11]

I. Egorova, The Cauchy problem for the KdV equation with almost periodic initial data whose spectrum is nowhere dense,, in \emph{Spectral Operator Theory and Related Topics, (1994), 181.   Google Scholar

[12]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. III. Special theories in dimensions 1, 2 and 3,, \emph{Ann. Inst. H. Poincar\'e Sect. A (N.S.)}, 28 (1978), 287.   Google Scholar

[13]

Y. Katznelson, An Introduction to Harmonic Analysis,, Third edition. Cambridge Mathematical Library. Cambridge University Press, (2004).  doi: 10.1017/CBO9781139165372.  Google Scholar

[14]

T. Ogawa and Y. Tsutsumi, Blow-up of solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary condition,, \emph{Functional-analytic Methods for Partial Differential Equations} (Tokyo, (1989), 236.  doi: 10.1007/BFb0084910.  Google Scholar

[15]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity,, \emph{Proc. Amer. Math. Soc.}, 111 (1991), 487.  doi: 10.2307/2048340.  Google Scholar

[16]

T. Oh, On nonlinear Schrödinger equations with almost periodic initial data,, \emph{SIAM J. Math. Anal.}, 47 (2015), 1253.  doi: 10.1137/140973384.  Google Scholar

[17]

T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis,, CBMS Regional Conference Series in Mathematics, (2006).   Google Scholar

[18]

K. Tsugawa, Local well-posedness of the KdV equation with quasi-periodic initial data,, \emph{SIAM J. Math. Anal.}, 44 (2012), 3412.  doi: 10.1137/110849973.  Google Scholar

[19]

Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups,, \emph{ Funkcial. Ekvac.}, 30 (1987), 115.   Google Scholar

[1]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[2]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[3]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[4]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[5]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[6]

Charlotte Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021002

[7]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[8]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[11]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[12]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[13]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[14]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[15]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[16]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[17]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[18]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[19]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[20]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]