- Previous Article
- CPAA Home
- This Issue
-
Next Article
Global existence for the defocusing nonlinear Schrödinger equations with limit periodic initial data
The dynamics of vortex filaments with corners
1. | Departamento de Matemáticas, UPV/EHU, Apdo 644, 48080 Bilbao, Spain |
References:
[1] |
V. Banica and L. Vega, On the stability of a singular vortex dynamics, Comm. Math. Phys., 286 (2009), 593-627.
doi: 10.1007/s00220-008-0682-3. |
[2] |
V. Banica and L. Vega, Scattering for 1D cubic NLS and singular vortex dynamics, J. Eur. Math. Soc.l, 14 (2012), 209-253.
doi: 10.4171/JEMS/300. |
[3] |
V. Banica and L. Vega, Stability of the self-similar dynamics of a vortex filament, Arch. Ration. Mech. Anal., 210 (2013), 673-712.
doi: 10.1007/s00205-013-0660-6. |
[4] |
V. Banica and L. Vega, The initial value problem for the binormal flow with rough data, preprint, arXiv:1304.0996. |
[5] |
T. F. Buttke, A numerical study of superfluid turbulence in the Self Induction Approximation, J. of Compt. Physics, 76 (1988), 301-326. |
[6] |
L. S. Da Rios, On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo, 22 (1906), 117. |
[7] |
M. B. Erdogan and N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus, preprint, arXiv:1303.3604.
doi: 10.4310/MRL.2013.v20.n6.a7. |
[8] |
S. Jaffard, The spectrum of singularities of Riemanns function, Rev. Mat. Iberoamericana, 12 (1996), 44-460.
doi: 10.4171/RMI/203. |
[9] |
U. Frisch and G. Parisi, Fully developed turbulence and intermittency, in Proc. Int. Sch. Phys. Enrico Fermi, North-Holland, Amsterdam, 1985. |
[10] |
U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, 1995. |
[11] |
L. Kapitanski and I. Rodnianski, Does a Quantum Particle Know the Time? Emerging Applications of Number Theory, IMA Vol. Math. Appl., 109 (1999), 355-371.
doi: 10.1007/978-1-4612-1544-8_14. |
[12] |
S. Gutiérrez and L. Vega, Self-similar solutions of the localized induction approximation: singularity formation, Nonlinearity, 17 (2004), 2091-2136.
doi: 10.1088/0951-7715/17/6/006. |
[13] |
S. Gutiérrez and L. Vega, On the stability of self-similar solutions of 1D cubic Schrödinger equations, Math. Ann., 356 (2013), 259-300.
doi: 10.1007/s00208-012-0847-4. |
[14] |
S. Gutiérrez, J. Rivas and L. Vega, Formation of singularities and self-similar vortex motion under the localized induction approximation, Comm. Part. Diff. Eq., 28 (2003), 927-968.
doi: 10.1081/PDE-120021181. |
[15] |
H. Hasimoto, A soliton in a vortex filament, J. Fluid Mech., 51 (1972), 477-485. |
[16] |
J. C. Hardin, The velocity field induced by a helical vortex filament, Phys. Fluids, 25 (1982), 1949-1952. |
[17] |
F. de la Hoz, Self-similar solutions for the 1-D Schrödinger map on the hyperbolic plane, Math. Z., 257 (2007), 61-80.
doi: 10.1007/s00209-007-0115-6. |
[18] |
F. de la Hoz and L. Vega, Vortex Filament Equation for a Regular Polygon, prepint, arXiv:1304.5521. |
[19] |
F. de la Hoz, C. García-Cervera and L. Vega, A numerical study of the self-similar solutions of the Schrödinger Map, SIAM J. Appl. Math., 70 (2009), 1047-1077.
doi: 10.1137/080741720. |
[20] |
C. E. Kenig, G. Ponce, and L.Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J., 106 (2001), 617-633.
doi: 10.1215/S0012-7094-01-10638-8. |
[21] |
M. Lakshmanan and M. Daniel, On the evolution of higher dimensional Heisenberg continuum spin systems, Physica A, 107 (1981), 533-552.
doi: 10.1016/0378-4371(81)90186-2. |
[22] |
M. Lakshmanan, T. W. Ruijgrok and C. J. Thompson, On the the dynamics of a continuum spin system, Physica A, 84 (1976), 577-590. |
[23] |
T, Lipniacki, Quasi-static solutions for quantum vortex motion under the localized induction approximation, J. Fluid Mech., 477 (2003), 321-337.
doi: 10.1017/S0022112002003282. |
[24] |
K. I. Oskolkov, A class of I. M. Vinogradov's series and its applications in harmonic analysis, in Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math. 19, Springer, New York, 1992, 353-402.
doi: 10.1007/978-1-4612-2966-7_16. |
[25] |
C. S. Peskin and D. M. McQueen, Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets, Am. J. Physiol. 266 (Heart Circ. Physiol. 35), (1994), H319-H328. |
[26] |
R. L. Ricca, The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics, Fluid Dynam. Res., 18 (1996), 245-268.
doi: 10.1016/0169-5983(96)82495-6. |
[27] |
R. L. Ricca, Rediscovery of Da Rios equations, Nature, 352 (1991), 561-562. |
[28] |
P. G. Saffman, Vortex dynamics, in Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York, 1992. |
show all references
References:
[1] |
V. Banica and L. Vega, On the stability of a singular vortex dynamics, Comm. Math. Phys., 286 (2009), 593-627.
doi: 10.1007/s00220-008-0682-3. |
[2] |
V. Banica and L. Vega, Scattering for 1D cubic NLS and singular vortex dynamics, J. Eur. Math. Soc.l, 14 (2012), 209-253.
doi: 10.4171/JEMS/300. |
[3] |
V. Banica and L. Vega, Stability of the self-similar dynamics of a vortex filament, Arch. Ration. Mech. Anal., 210 (2013), 673-712.
doi: 10.1007/s00205-013-0660-6. |
[4] |
V. Banica and L. Vega, The initial value problem for the binormal flow with rough data, preprint, arXiv:1304.0996. |
[5] |
T. F. Buttke, A numerical study of superfluid turbulence in the Self Induction Approximation, J. of Compt. Physics, 76 (1988), 301-326. |
[6] |
L. S. Da Rios, On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo, 22 (1906), 117. |
[7] |
M. B. Erdogan and N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus, preprint, arXiv:1303.3604.
doi: 10.4310/MRL.2013.v20.n6.a7. |
[8] |
S. Jaffard, The spectrum of singularities of Riemanns function, Rev. Mat. Iberoamericana, 12 (1996), 44-460.
doi: 10.4171/RMI/203. |
[9] |
U. Frisch and G. Parisi, Fully developed turbulence and intermittency, in Proc. Int. Sch. Phys. Enrico Fermi, North-Holland, Amsterdam, 1985. |
[10] |
U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, 1995. |
[11] |
L. Kapitanski and I. Rodnianski, Does a Quantum Particle Know the Time? Emerging Applications of Number Theory, IMA Vol. Math. Appl., 109 (1999), 355-371.
doi: 10.1007/978-1-4612-1544-8_14. |
[12] |
S. Gutiérrez and L. Vega, Self-similar solutions of the localized induction approximation: singularity formation, Nonlinearity, 17 (2004), 2091-2136.
doi: 10.1088/0951-7715/17/6/006. |
[13] |
S. Gutiérrez and L. Vega, On the stability of self-similar solutions of 1D cubic Schrödinger equations, Math. Ann., 356 (2013), 259-300.
doi: 10.1007/s00208-012-0847-4. |
[14] |
S. Gutiérrez, J. Rivas and L. Vega, Formation of singularities and self-similar vortex motion under the localized induction approximation, Comm. Part. Diff. Eq., 28 (2003), 927-968.
doi: 10.1081/PDE-120021181. |
[15] |
H. Hasimoto, A soliton in a vortex filament, J. Fluid Mech., 51 (1972), 477-485. |
[16] |
J. C. Hardin, The velocity field induced by a helical vortex filament, Phys. Fluids, 25 (1982), 1949-1952. |
[17] |
F. de la Hoz, Self-similar solutions for the 1-D Schrödinger map on the hyperbolic plane, Math. Z., 257 (2007), 61-80.
doi: 10.1007/s00209-007-0115-6. |
[18] |
F. de la Hoz and L. Vega, Vortex Filament Equation for a Regular Polygon, prepint, arXiv:1304.5521. |
[19] |
F. de la Hoz, C. García-Cervera and L. Vega, A numerical study of the self-similar solutions of the Schrödinger Map, SIAM J. Appl. Math., 70 (2009), 1047-1077.
doi: 10.1137/080741720. |
[20] |
C. E. Kenig, G. Ponce, and L.Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J., 106 (2001), 617-633.
doi: 10.1215/S0012-7094-01-10638-8. |
[21] |
M. Lakshmanan and M. Daniel, On the evolution of higher dimensional Heisenberg continuum spin systems, Physica A, 107 (1981), 533-552.
doi: 10.1016/0378-4371(81)90186-2. |
[22] |
M. Lakshmanan, T. W. Ruijgrok and C. J. Thompson, On the the dynamics of a continuum spin system, Physica A, 84 (1976), 577-590. |
[23] |
T, Lipniacki, Quasi-static solutions for quantum vortex motion under the localized induction approximation, J. Fluid Mech., 477 (2003), 321-337.
doi: 10.1017/S0022112002003282. |
[24] |
K. I. Oskolkov, A class of I. M. Vinogradov's series and its applications in harmonic analysis, in Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math. 19, Springer, New York, 1992, 353-402.
doi: 10.1007/978-1-4612-2966-7_16. |
[25] |
C. S. Peskin and D. M. McQueen, Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets, Am. J. Physiol. 266 (Heart Circ. Physiol. 35), (1994), H319-H328. |
[26] |
R. L. Ricca, The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics, Fluid Dynam. Res., 18 (1996), 245-268.
doi: 10.1016/0169-5983(96)82495-6. |
[27] |
R. L. Ricca, Rediscovery of Da Rios equations, Nature, 352 (1991), 561-562. |
[28] |
P. G. Saffman, Vortex dynamics, in Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York, 1992. |
[1] |
Francesco Paparella, Alessandro Portaluri. Geometry of stationary solutions for a system of vortex filaments: A dynamical approach. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3011-3042. doi: 10.3934/dcds.2013.33.3011 |
[2] |
Luc Bergé, Stefan Skupin. Modeling ultrashort filaments of light. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1099-1139. doi: 10.3934/dcds.2009.23.1099 |
[3] |
Rémi Carles, Erwan Faou. Energy cascades for NLS on the torus. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2063-2077. doi: 10.3934/dcds.2012.32.2063 |
[4] |
Patrick Cummings, C. Eugene Wayne. Modified energy functionals and the NLS approximation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1295-1321. doi: 10.3934/dcds.2017054 |
[5] |
Jair Koiller. Getting into the vortex: On the contributions of james montaldi. Journal of Geometric Mechanics, 2020, 12 (3) : 507-523. doi: 10.3934/jgm.2020018 |
[6] |
Fanghua Lin, Juncheng Wei. Superfluids passing an obstacle and vortex nucleation. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6801-6824. doi: 10.3934/dcds.2019232 |
[7] |
P.K. Newton. N-vortex equilibrium theory. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 411-418. doi: 10.3934/dcds.2007.19.411 |
[8] |
Cynthia Ferreira, Guillaume James, Michel Peyrard. Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1147-1166. doi: 10.3934/dcdss.2011.4.1147 |
[9] |
Jean-Pierre Eckmann, C. Eugene Wayne. Breathers as metastable states for the discrete NLS equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6091-6103. doi: 10.3934/dcds.2018136 |
[10] |
Vassilis Rothos. Subharmonic bifurcations of localized solutions of a discrete NLS equation. Conference Publications, 2005, 2005 (Special) : 756-767. doi: 10.3934/proc.2005.2005.756 |
[11] |
Casey Jao. Energy-critical NLS with potentials of quadratic growth. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 563-587. doi: 10.3934/dcds.2018025 |
[12] |
A. Adam Azzam. Scattering for the two dimensional NLS with (full) exponential nonlinearity. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1071-1101. doi: 10.3934/cpaa.2018052 |
[13] |
Kai Yang. The focusing NLS on exterior domains in three dimensions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2269-2297. doi: 10.3934/cpaa.2017112 |
[14] |
Scipio Cuccagna. Orbitally but not asymptotically stable ground states for the discrete NLS. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 105-134. doi: 10.3934/dcds.2010.26.105 |
[15] |
Panayotis Panayotaros. Continuation and bifurcations of breathers in a finite discrete NLS equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1227-1245. doi: 10.3934/dcdss.2011.4.1227 |
[16] |
Valeria Banica, Rémi Carles, Thomas Duyckaerts. On scattering for NLS: From Euclidean to hyperbolic space. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1113-1127. doi: 10.3934/dcds.2009.24.1113 |
[17] |
Panayotis Panayotaros, Felipe Rivero. Multistability and localized attractors in a dissipative discrete NLS equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1137-1154. doi: 10.3934/dcdsb.2014.19.1137 |
[18] |
Marco Bravin, Luis Vega. On the one dimensional cubic NLS in a critical space. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2563-2584. doi: 10.3934/dcds.2021203 |
[19] |
Volker Elling. Compressible vortex sheets separating from solid boundaries. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6781-6797. doi: 10.3934/dcds.2016095 |
[20] |
Zineb Hassainia, Taoufik Hmidi. Steady asymmetric vortex pairs for Euler equations. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1939-1969. doi: 10.3934/dcds.2020348 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]