-
Previous Article
On global solutions in one-dimensional thermoelasticity with second sound in the half line
- CPAA Home
- This Issue
-
Next Article
Shape optimization in compressible liquid crystals
Sharp threshold for scattering of a generalized Davey-Stewartson system in three dimension
1. | China Academy of Engineering Physics, Beijing 100088, China |
2. | School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 1000875 , China |
References:
[1] |
H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175. |
[2] |
T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Métedos Matemáticos, Vol. 22, I.M.U.F.R.J., Rio de Janiero, 1989. |
[3] |
R. Cipolatti, On the existence of standing waves for a Davey-Stewartson system, Comm. Part. Diff. Eq., 17 (1992), 967-988.
doi: 10.1080/03605309208820872. |
[4] |
R. Cipolatti, On the instability of ground states for a Davey-Stewartson system, Annales de l'I. H. P., section A, 58 (1993), 85-104. |
[5] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified Kdv on $\mathbb{R}^{N}$ and $T$, J. Amer. Math. Soc., 16 (2003), 705-749.
doi: 10.1090/S0894-0347-03-00421-1. |
[6] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $R^3$, Annals of Math., 167 (2008), 767-865.
doi: 10.4007/annals.2008.167.767. |
[7] |
A. Davey and K. Stewartson, On 3-dimensional packets of surface waves, Proc. R. Soc. London A, 338 (1974), 101-110. |
[8] |
T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.
doi: 10.4310/MRL.2008.v15.n6.a13. |
[9] |
D. Du, Y. Wu and K. Zhang, On blow-up criterion for the nonlinear Schrödinger equation, Preprint. |
[10] |
D. Foschi, Inhomogeneous Strichartz estimates, J. Hyper. Diff. Eq., 2 (2005), 1-24.
doi: 10.1142/S0219891605000361. |
[11] |
Z. Gan and J. Zhang, Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system, Comm. Math. Phys., 283 (2008), 93-125.
doi: 10.1007/s00220-008-0456-y. |
[12] |
J-M. Ghidaglia and J. C. Saut, On the initial value problem for the Davey-Stewartson systems, Nonlinearity, 3 (1990), 475-506. |
[13] |
P. Gérard, Oscillations and concentration effects in semilinear dispersive wave equations, J. Funct. Anal., 141 (1996), 60-98.
doi: 10.1006/jfan.1996.0122. |
[14] |
J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3d cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.
doi: 10.1007/s00220-008-0529-y. |
[15] |
J. Holmer and S. Roudenko, Divergence of infinite-variance nonradial solutions to the 3d NLS equation, Comm, Partial Differ. Eqns, 35, (2010), 875-905.
doi: 10.1080/03605301003646713. |
[16] |
S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Analysis & PDE, 4-3 (2011), 405-460.
doi: 10.2140/apde.2011.4.405. |
[17] |
C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[18] |
C. Kenig, G. Ponce and L. Vega, On the Zakharov and Zakharov-Shulman systems, J. Funct. Anal., 127 (1995), 204-234.
doi: 10.1006/jfan.1995.1009. |
[19] |
S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equation, J. Diff. Eq., 175 (2001), 353-392.
doi: 10.1006/jdeq.2000.3951. |
[20] |
R. Killip, M. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, 1 (2008), 229-266.
doi: 10.2140/apde.2008.1.229. |
[21] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data, J. Funct. Anal., 253 (2007), 605-627.
doi: 10.1016/j.jfa.2007.09.008. |
[22] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the defocusing $H^{\frac12}$-subcritical Hartree equation in $mathbb{R}^{d}$, Ann. I. H. Poincaré-NA, 26 (2009), 1831-1852.
doi: 10.1016/j.anihpc.2009.01.003. |
[23] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the mass-critical Hartree equation with radial data, J. Math. Pures Appl., 91 (2009), 49-79.
doi: 10.1016/j.matpur.2008.09.003. |
[24] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation in $\R^{1+n}$, Comm. Partial. Diff. Eqn., 36 (2011), 729-776.
doi: 10.1080/03605302.2010.531073. |
[25] |
K. Nishinari, K. Abe and J. Satsuma, Multidimensional behavior of an eletrostatic ion wave in a magnetized plasma, Phys. Plasmas, 1 (1994), 2559-2565. |
[26] |
M. Ohta, Instability of standing waves for the generalized Davey-Stewartson system, Annales de l'I. H. P., section A, 62 (1995), 69-80. |
[27] |
G. C. Papanicolaou, C. Sulem, P-L. Sulem and X. P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves, Physica D, 72 (1994), 61-86.
doi: 10.1016/0167-2789(94)90167-8. |
[28] |
C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse, Springer-Verlag, New York, 1999. |
[29] |
M. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Tran. Amer. Math. Soc., 359 (2007), 2123-2136.
doi: 10.1090/S0002-9947-06-04099-2. |
[30] |
V. Zakharov and E. Schulman, Integrability of nonlinear systems and perturbation theory, in what is integrability?(Zakharov, ed.) 189-250, Springer Series on Nonlinear Dynamics, Springer-Verlag. |
show all references
References:
[1] |
H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175. |
[2] |
T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Métedos Matemáticos, Vol. 22, I.M.U.F.R.J., Rio de Janiero, 1989. |
[3] |
R. Cipolatti, On the existence of standing waves for a Davey-Stewartson system, Comm. Part. Diff. Eq., 17 (1992), 967-988.
doi: 10.1080/03605309208820872. |
[4] |
R. Cipolatti, On the instability of ground states for a Davey-Stewartson system, Annales de l'I. H. P., section A, 58 (1993), 85-104. |
[5] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified Kdv on $\mathbb{R}^{N}$ and $T$, J. Amer. Math. Soc., 16 (2003), 705-749.
doi: 10.1090/S0894-0347-03-00421-1. |
[6] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $R^3$, Annals of Math., 167 (2008), 767-865.
doi: 10.4007/annals.2008.167.767. |
[7] |
A. Davey and K. Stewartson, On 3-dimensional packets of surface waves, Proc. R. Soc. London A, 338 (1974), 101-110. |
[8] |
T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.
doi: 10.4310/MRL.2008.v15.n6.a13. |
[9] |
D. Du, Y. Wu and K. Zhang, On blow-up criterion for the nonlinear Schrödinger equation, Preprint. |
[10] |
D. Foschi, Inhomogeneous Strichartz estimates, J. Hyper. Diff. Eq., 2 (2005), 1-24.
doi: 10.1142/S0219891605000361. |
[11] |
Z. Gan and J. Zhang, Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system, Comm. Math. Phys., 283 (2008), 93-125.
doi: 10.1007/s00220-008-0456-y. |
[12] |
J-M. Ghidaglia and J. C. Saut, On the initial value problem for the Davey-Stewartson systems, Nonlinearity, 3 (1990), 475-506. |
[13] |
P. Gérard, Oscillations and concentration effects in semilinear dispersive wave equations, J. Funct. Anal., 141 (1996), 60-98.
doi: 10.1006/jfan.1996.0122. |
[14] |
J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3d cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.
doi: 10.1007/s00220-008-0529-y. |
[15] |
J. Holmer and S. Roudenko, Divergence of infinite-variance nonradial solutions to the 3d NLS equation, Comm, Partial Differ. Eqns, 35, (2010), 875-905.
doi: 10.1080/03605301003646713. |
[16] |
S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Analysis & PDE, 4-3 (2011), 405-460.
doi: 10.2140/apde.2011.4.405. |
[17] |
C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[18] |
C. Kenig, G. Ponce and L. Vega, On the Zakharov and Zakharov-Shulman systems, J. Funct. Anal., 127 (1995), 204-234.
doi: 10.1006/jfan.1995.1009. |
[19] |
S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equation, J. Diff. Eq., 175 (2001), 353-392.
doi: 10.1006/jdeq.2000.3951. |
[20] |
R. Killip, M. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, 1 (2008), 229-266.
doi: 10.2140/apde.2008.1.229. |
[21] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data, J. Funct. Anal., 253 (2007), 605-627.
doi: 10.1016/j.jfa.2007.09.008. |
[22] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the defocusing $H^{\frac12}$-subcritical Hartree equation in $mathbb{R}^{d}$, Ann. I. H. Poincaré-NA, 26 (2009), 1831-1852.
doi: 10.1016/j.anihpc.2009.01.003. |
[23] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the mass-critical Hartree equation with radial data, J. Math. Pures Appl., 91 (2009), 49-79.
doi: 10.1016/j.matpur.2008.09.003. |
[24] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation in $\R^{1+n}$, Comm. Partial. Diff. Eqn., 36 (2011), 729-776.
doi: 10.1080/03605302.2010.531073. |
[25] |
K. Nishinari, K. Abe and J. Satsuma, Multidimensional behavior of an eletrostatic ion wave in a magnetized plasma, Phys. Plasmas, 1 (1994), 2559-2565. |
[26] |
M. Ohta, Instability of standing waves for the generalized Davey-Stewartson system, Annales de l'I. H. P., section A, 62 (1995), 69-80. |
[27] |
G. C. Papanicolaou, C. Sulem, P-L. Sulem and X. P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves, Physica D, 72 (1994), 61-86.
doi: 10.1016/0167-2789(94)90167-8. |
[28] |
C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse, Springer-Verlag, New York, 1999. |
[29] |
M. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Tran. Amer. Math. Soc., 359 (2007), 2123-2136.
doi: 10.1090/S0002-9947-06-04099-2. |
[30] |
V. Zakharov and E. Schulman, Integrability of nonlinear systems and perturbation theory, in what is integrability?(Zakharov, ed.) 189-250, Springer Series on Nonlinear Dynamics, Springer-Verlag. |
[1] |
Christian Klein, Benson Muite, Kristelle Roidot. Numerical study of blow-up in the Davey-Stewartson system. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1361-1387. doi: 10.3934/dcdsb.2013.18.1361 |
[2] |
Shiming Li, Yongsheng Li, Wei Yan. A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1899-1912. doi: 10.3934/dcdss.2016077 |
[3] |
Olivier Goubet, Manal Hussein. Global attractor for the Davey-Stewartson system on $\mathbb R^2$. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1555-1575. doi: 10.3934/cpaa.2009.8.1555 |
[4] |
Christian Klein, Jean-Claude Saut. A numerical approach to Blow-up issues for Davey-Stewartson II systems. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1443-1467. doi: 10.3934/cpaa.2015.14.1443 |
[5] |
Uchida Hidetake. Analytic smoothing effect and global existence of small solutions for the elliptic-hyperbolic Davey-Stewartson system. Conference Publications, 2001, 2001 (Special) : 182-190. doi: 10.3934/proc.2001.2001.182 |
[6] |
Zaihui Gan, Boling Guo, Jian Zhang. Sharp threshold of global existence for the generalized Davey-Stewartson system in $R^2$. Communications on Pure and Applied Analysis, 2009, 8 (3) : 913-922. doi: 10.3934/cpaa.2009.8.913 |
[7] |
Caroline Obrecht, J.-C. Saut. Remarks on the full dispersion Davey-Stewartson systems. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1547-1561. doi: 10.3934/cpaa.2015.14.1547 |
[8] |
Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations and Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355 |
[9] |
Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025 |
[10] |
Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171 |
[11] |
Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843 |
[12] |
Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112 |
[13] |
Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809 |
[14] |
Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203 |
[15] |
Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111 |
[16] |
Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501 |
[17] |
Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493 |
[18] |
Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781 |
[19] |
Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042 |
[20] |
Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]