September  2015, 14(5): 1641-1670. doi: 10.3934/cpaa.2015.14.1641

Sharp threshold for scattering of a generalized Davey-Stewartson system in three dimension

1. 

China Academy of Engineering Physics, Beijing 100088, China

2. 

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 1000875 , China

Received  November 2013 Revised  December 2014 Published  June 2015

In this paper, we consider the Cauchy problem for the generalized Davey-Stewartson system \begin{eqnarray} &i\partial_t u + \Delta u =-a|u|^{p-1}u+b_1uv_{x_1}, (t,x)\in R \times R^3,\\ &-\Delta v=b_2(|u|^2)_{x_1}, \end{eqnarray} where $a>0,b_1b_2>0$, $\frac{4}{3}+1< p< 5$. We first use a variational approach to give a dichotomy of blow-up and scattering for the solution of mass supercritical equation with the initial data satisfying $J(u_0)
Citation: Jing Lu, Yifei Wu. Sharp threshold for scattering of a generalized Davey-Stewartson system in three dimension. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1641-1670. doi: 10.3934/cpaa.2015.14.1641
References:
[1]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations,, \emph{Amer. J. Math.}, 121 (1999), 131.   Google Scholar

[2]

T. Cazenave, An Introduction to Nonlinear Schrödinger Equations,, Textos de M\'etedos Matem\'aticos, 22 (1989).   Google Scholar

[3]

R. Cipolatti, On the existence of standing waves for a Davey-Stewartson system,, \emph{Comm. Part. Diff. Eq.}, 17 (1992), 967.  doi: 10.1080/03605309208820872.  Google Scholar

[4]

R. Cipolatti, On the instability of ground states for a Davey-Stewartson system,, \emph{Annales de l'I. H. P., 58 (1993), 85.   Google Scholar

[5]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified Kdv on $R$ and $T$,, \emph{J. Amer. Math. Soc.}, 16 (2003), 705.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[6]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $R^3$,, \emph{Annals of Math.}, 167 (2008), 767.  doi: 10.4007/annals.2008.167.767.  Google Scholar

[7]

A. Davey and K. Stewartson, On 3-dimensional packets of surface waves,, \emph{Proc. R. Soc. London A, 338 (1974), 101.   Google Scholar

[8]

T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation,, \emph{Math. Res. Lett.}, 15 (2008), 1233.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[9]

D. Du, Y. Wu and K. Zhang, On blow-up criterion for the nonlinear Schrödinger equation,, Preprint., ().   Google Scholar

[10]

D. Foschi, Inhomogeneous Strichartz estimates,, \emph{J. Hyper. Diff. Eq.}, 2 (2005), 1.  doi: 10.1142/S0219891605000361.  Google Scholar

[11]

Z. Gan and J. Zhang, Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system,, \emph{Comm. Math. Phys.}, 283 (2008), 93.  doi: 10.1007/s00220-008-0456-y.  Google Scholar

[12]

J-M. Ghidaglia and J. C. Saut, On the initial value problem for the Davey-Stewartson systems,, \emph{Nonlinearity}, 3 (1990), 475.   Google Scholar

[13]

P. Gérard, Oscillations and concentration effects in semilinear dispersive wave equations,, \emph{J. Funct. Anal.}, 141 (1996), 60.  doi: 10.1006/jfan.1996.0122.  Google Scholar

[14]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3d cubic nonlinear Schrödinger equation,, \emph{Comm. Math. Phys.}, 282 (2008), 435.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[15]

J. Holmer and S. Roudenko, Divergence of infinite-variance nonradial solutions to the 3d NLS equation,, \emph{Comm, 35 (2010), 875.  doi: 10.1080/03605301003646713.  Google Scholar

[16]

S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation,, \emph{Analysis & PDE}, 4-3 (2011), 4.  doi: 10.2140/apde.2011.4.405.  Google Scholar

[17]

C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case,, \emph{Invent. Math.}, 166 (2006), 645.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[18]

C. Kenig, G. Ponce and L. Vega, On the Zakharov and Zakharov-Shulman systems,, \emph{J. Funct. Anal.}, 127 (1995), 204.  doi: 10.1006/jfan.1995.1009.  Google Scholar

[19]

S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equation,, \emph{J. Diff. Eq.}, 175 (2001), 353.  doi: 10.1006/jdeq.2000.3951.  Google Scholar

[20]

R. Killip, M. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher,, \emph{Anal. PDE}, 1 (2008), 229.  doi: 10.2140/apde.2008.1.229.  Google Scholar

[21]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data,, \emph{J. Funct. Anal.}, 253 (2007), 605.  doi: 10.1016/j.jfa.2007.09.008.  Google Scholar

[22]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the defocusing $H^{\frac12}$-subcritical Hartree equation in $R^d$,, \emph{Ann. I. H. Poincar$\acutee$-NA}, 26 (2009), 1831.  doi: 10.1016/j.anihpc.2009.01.003.  Google Scholar

[23]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the mass-critical Hartree equation with radial data,, \emph{J. Math. Pures Appl.}, 91 (2009), 49.  doi: 10.1016/j.matpur.2008.09.003.  Google Scholar

[24]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation in $\R^{1+n}$,, \emph{Comm. Partial. Diff. Eqn.}, 36 (2011), 729.  doi: 10.1080/03605302.2010.531073.  Google Scholar

[25]

K. Nishinari, K. Abe and J. Satsuma, Multidimensional behavior of an eletrostatic ion wave in a magnetized plasma,, \emph{Phys. Plasmas}, 1 (1994), 2559.   Google Scholar

[26]

M. Ohta, Instability of standing waves for the generalized Davey-Stewartson system,, \emph{Annales de l'I. H. P., 62 (1995), 69.   Google Scholar

[27]

G. C. Papanicolaou, C. Sulem, P-L. Sulem and X. P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves,, \emph{Physica D}, 72 (1994), 61.  doi: 10.1016/0167-2789(94)90167-8.  Google Scholar

[28]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse,, Springer-Verlag, (1999).   Google Scholar

[29]

M. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation,, \emph{Tran. Amer. Math. Soc.}, 359 (2007), 2123.  doi: 10.1090/S0002-9947-06-04099-2.  Google Scholar

[30]

V. Zakharov and E. Schulman, Integrability of nonlinear systems and perturbation theory,, in \emph{what is integrability?}(Zakharov, (): 189.   Google Scholar

show all references

References:
[1]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations,, \emph{Amer. J. Math.}, 121 (1999), 131.   Google Scholar

[2]

T. Cazenave, An Introduction to Nonlinear Schrödinger Equations,, Textos de M\'etedos Matem\'aticos, 22 (1989).   Google Scholar

[3]

R. Cipolatti, On the existence of standing waves for a Davey-Stewartson system,, \emph{Comm. Part. Diff. Eq.}, 17 (1992), 967.  doi: 10.1080/03605309208820872.  Google Scholar

[4]

R. Cipolatti, On the instability of ground states for a Davey-Stewartson system,, \emph{Annales de l'I. H. P., 58 (1993), 85.   Google Scholar

[5]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified Kdv on $R$ and $T$,, \emph{J. Amer. Math. Soc.}, 16 (2003), 705.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[6]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $R^3$,, \emph{Annals of Math.}, 167 (2008), 767.  doi: 10.4007/annals.2008.167.767.  Google Scholar

[7]

A. Davey and K. Stewartson, On 3-dimensional packets of surface waves,, \emph{Proc. R. Soc. London A, 338 (1974), 101.   Google Scholar

[8]

T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation,, \emph{Math. Res. Lett.}, 15 (2008), 1233.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[9]

D. Du, Y. Wu and K. Zhang, On blow-up criterion for the nonlinear Schrödinger equation,, Preprint., ().   Google Scholar

[10]

D. Foschi, Inhomogeneous Strichartz estimates,, \emph{J. Hyper. Diff. Eq.}, 2 (2005), 1.  doi: 10.1142/S0219891605000361.  Google Scholar

[11]

Z. Gan and J. Zhang, Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system,, \emph{Comm. Math. Phys.}, 283 (2008), 93.  doi: 10.1007/s00220-008-0456-y.  Google Scholar

[12]

J-M. Ghidaglia and J. C. Saut, On the initial value problem for the Davey-Stewartson systems,, \emph{Nonlinearity}, 3 (1990), 475.   Google Scholar

[13]

P. Gérard, Oscillations and concentration effects in semilinear dispersive wave equations,, \emph{J. Funct. Anal.}, 141 (1996), 60.  doi: 10.1006/jfan.1996.0122.  Google Scholar

[14]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3d cubic nonlinear Schrödinger equation,, \emph{Comm. Math. Phys.}, 282 (2008), 435.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[15]

J. Holmer and S. Roudenko, Divergence of infinite-variance nonradial solutions to the 3d NLS equation,, \emph{Comm, 35 (2010), 875.  doi: 10.1080/03605301003646713.  Google Scholar

[16]

S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation,, \emph{Analysis & PDE}, 4-3 (2011), 4.  doi: 10.2140/apde.2011.4.405.  Google Scholar

[17]

C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case,, \emph{Invent. Math.}, 166 (2006), 645.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[18]

C. Kenig, G. Ponce and L. Vega, On the Zakharov and Zakharov-Shulman systems,, \emph{J. Funct. Anal.}, 127 (1995), 204.  doi: 10.1006/jfan.1995.1009.  Google Scholar

[19]

S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equation,, \emph{J. Diff. Eq.}, 175 (2001), 353.  doi: 10.1006/jdeq.2000.3951.  Google Scholar

[20]

R. Killip, M. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher,, \emph{Anal. PDE}, 1 (2008), 229.  doi: 10.2140/apde.2008.1.229.  Google Scholar

[21]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data,, \emph{J. Funct. Anal.}, 253 (2007), 605.  doi: 10.1016/j.jfa.2007.09.008.  Google Scholar

[22]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the defocusing $H^{\frac12}$-subcritical Hartree equation in $R^d$,, \emph{Ann. I. H. Poincar$\acutee$-NA}, 26 (2009), 1831.  doi: 10.1016/j.anihpc.2009.01.003.  Google Scholar

[23]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the mass-critical Hartree equation with radial data,, \emph{J. Math. Pures Appl.}, 91 (2009), 49.  doi: 10.1016/j.matpur.2008.09.003.  Google Scholar

[24]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation in $\R^{1+n}$,, \emph{Comm. Partial. Diff. Eqn.}, 36 (2011), 729.  doi: 10.1080/03605302.2010.531073.  Google Scholar

[25]

K. Nishinari, K. Abe and J. Satsuma, Multidimensional behavior of an eletrostatic ion wave in a magnetized plasma,, \emph{Phys. Plasmas}, 1 (1994), 2559.   Google Scholar

[26]

M. Ohta, Instability of standing waves for the generalized Davey-Stewartson system,, \emph{Annales de l'I. H. P., 62 (1995), 69.   Google Scholar

[27]

G. C. Papanicolaou, C. Sulem, P-L. Sulem and X. P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves,, \emph{Physica D}, 72 (1994), 61.  doi: 10.1016/0167-2789(94)90167-8.  Google Scholar

[28]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse,, Springer-Verlag, (1999).   Google Scholar

[29]

M. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation,, \emph{Tran. Amer. Math. Soc.}, 359 (2007), 2123.  doi: 10.1090/S0002-9947-06-04099-2.  Google Scholar

[30]

V. Zakharov and E. Schulman, Integrability of nonlinear systems and perturbation theory,, in \emph{what is integrability?}(Zakharov, (): 189.   Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[5]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[6]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[7]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[11]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[12]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[13]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[14]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[16]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[17]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[18]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[19]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]