September  2015, 14(5): 1641-1670. doi: 10.3934/cpaa.2015.14.1641

Sharp threshold for scattering of a generalized Davey-Stewartson system in three dimension

1. 

China Academy of Engineering Physics, Beijing 100088, China

2. 

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 1000875 , China

Received  November 2013 Revised  December 2014 Published  June 2015

In this paper, we consider the Cauchy problem for the generalized Davey-Stewartson system \begin{eqnarray} &i\partial_t u + \Delta u =-a|u|^{p-1}u+b_1uv_{x_1}, (t,x)\in R \times R^3,\\ &-\Delta v=b_2(|u|^2)_{x_1}, \end{eqnarray} where $a>0,b_1b_2>0$, $\frac{4}{3}+1< p< 5$. We first use a variational approach to give a dichotomy of blow-up and scattering for the solution of mass supercritical equation with the initial data satisfying $J(u_0)
Citation: Jing Lu, Yifei Wu. Sharp threshold for scattering of a generalized Davey-Stewartson system in three dimension. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1641-1670. doi: 10.3934/cpaa.2015.14.1641
References:
[1]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations,, \emph{Amer. J. Math.}, 121 (1999), 131.   Google Scholar

[2]

T. Cazenave, An Introduction to Nonlinear Schrödinger Equations,, Textos de M\'etedos Matem\'aticos, 22 (1989).   Google Scholar

[3]

R. Cipolatti, On the existence of standing waves for a Davey-Stewartson system,, \emph{Comm. Part. Diff. Eq.}, 17 (1992), 967.  doi: 10.1080/03605309208820872.  Google Scholar

[4]

R. Cipolatti, On the instability of ground states for a Davey-Stewartson system,, \emph{Annales de l'I. H. P., 58 (1993), 85.   Google Scholar

[5]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified Kdv on $R$ and $T$,, \emph{J. Amer. Math. Soc.}, 16 (2003), 705.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[6]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $R^3$,, \emph{Annals of Math.}, 167 (2008), 767.  doi: 10.4007/annals.2008.167.767.  Google Scholar

[7]

A. Davey and K. Stewartson, On 3-dimensional packets of surface waves,, \emph{Proc. R. Soc. London A, 338 (1974), 101.   Google Scholar

[8]

T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation,, \emph{Math. Res. Lett.}, 15 (2008), 1233.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[9]

D. Du, Y. Wu and K. Zhang, On blow-up criterion for the nonlinear Schrödinger equation,, Preprint., ().   Google Scholar

[10]

D. Foschi, Inhomogeneous Strichartz estimates,, \emph{J. Hyper. Diff. Eq.}, 2 (2005), 1.  doi: 10.1142/S0219891605000361.  Google Scholar

[11]

Z. Gan and J. Zhang, Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system,, \emph{Comm. Math. Phys.}, 283 (2008), 93.  doi: 10.1007/s00220-008-0456-y.  Google Scholar

[12]

J-M. Ghidaglia and J. C. Saut, On the initial value problem for the Davey-Stewartson systems,, \emph{Nonlinearity}, 3 (1990), 475.   Google Scholar

[13]

P. Gérard, Oscillations and concentration effects in semilinear dispersive wave equations,, \emph{J. Funct. Anal.}, 141 (1996), 60.  doi: 10.1006/jfan.1996.0122.  Google Scholar

[14]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3d cubic nonlinear Schrödinger equation,, \emph{Comm. Math. Phys.}, 282 (2008), 435.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[15]

J. Holmer and S. Roudenko, Divergence of infinite-variance nonradial solutions to the 3d NLS equation,, \emph{Comm, 35 (2010), 875.  doi: 10.1080/03605301003646713.  Google Scholar

[16]

S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation,, \emph{Analysis & PDE}, 4-3 (2011), 4.  doi: 10.2140/apde.2011.4.405.  Google Scholar

[17]

C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case,, \emph{Invent. Math.}, 166 (2006), 645.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[18]

C. Kenig, G. Ponce and L. Vega, On the Zakharov and Zakharov-Shulman systems,, \emph{J. Funct. Anal.}, 127 (1995), 204.  doi: 10.1006/jfan.1995.1009.  Google Scholar

[19]

S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equation,, \emph{J. Diff. Eq.}, 175 (2001), 353.  doi: 10.1006/jdeq.2000.3951.  Google Scholar

[20]

R. Killip, M. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher,, \emph{Anal. PDE}, 1 (2008), 229.  doi: 10.2140/apde.2008.1.229.  Google Scholar

[21]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data,, \emph{J. Funct. Anal.}, 253 (2007), 605.  doi: 10.1016/j.jfa.2007.09.008.  Google Scholar

[22]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the defocusing $H^{\frac12}$-subcritical Hartree equation in $R^d$,, \emph{Ann. I. H. Poincar$\acutee$-NA}, 26 (2009), 1831.  doi: 10.1016/j.anihpc.2009.01.003.  Google Scholar

[23]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the mass-critical Hartree equation with radial data,, \emph{J. Math. Pures Appl.}, 91 (2009), 49.  doi: 10.1016/j.matpur.2008.09.003.  Google Scholar

[24]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation in $\R^{1+n}$,, \emph{Comm. Partial. Diff. Eqn.}, 36 (2011), 729.  doi: 10.1080/03605302.2010.531073.  Google Scholar

[25]

K. Nishinari, K. Abe and J. Satsuma, Multidimensional behavior of an eletrostatic ion wave in a magnetized plasma,, \emph{Phys. Plasmas}, 1 (1994), 2559.   Google Scholar

[26]

M. Ohta, Instability of standing waves for the generalized Davey-Stewartson system,, \emph{Annales de l'I. H. P., 62 (1995), 69.   Google Scholar

[27]

G. C. Papanicolaou, C. Sulem, P-L. Sulem and X. P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves,, \emph{Physica D}, 72 (1994), 61.  doi: 10.1016/0167-2789(94)90167-8.  Google Scholar

[28]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse,, Springer-Verlag, (1999).   Google Scholar

[29]

M. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation,, \emph{Tran. Amer. Math. Soc.}, 359 (2007), 2123.  doi: 10.1090/S0002-9947-06-04099-2.  Google Scholar

[30]

V. Zakharov and E. Schulman, Integrability of nonlinear systems and perturbation theory,, in \emph{what is integrability?}(Zakharov, (): 189.   Google Scholar

show all references

References:
[1]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations,, \emph{Amer. J. Math.}, 121 (1999), 131.   Google Scholar

[2]

T. Cazenave, An Introduction to Nonlinear Schrödinger Equations,, Textos de M\'etedos Matem\'aticos, 22 (1989).   Google Scholar

[3]

R. Cipolatti, On the existence of standing waves for a Davey-Stewartson system,, \emph{Comm. Part. Diff. Eq.}, 17 (1992), 967.  doi: 10.1080/03605309208820872.  Google Scholar

[4]

R. Cipolatti, On the instability of ground states for a Davey-Stewartson system,, \emph{Annales de l'I. H. P., 58 (1993), 85.   Google Scholar

[5]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified Kdv on $R$ and $T$,, \emph{J. Amer. Math. Soc.}, 16 (2003), 705.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[6]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $R^3$,, \emph{Annals of Math.}, 167 (2008), 767.  doi: 10.4007/annals.2008.167.767.  Google Scholar

[7]

A. Davey and K. Stewartson, On 3-dimensional packets of surface waves,, \emph{Proc. R. Soc. London A, 338 (1974), 101.   Google Scholar

[8]

T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation,, \emph{Math. Res. Lett.}, 15 (2008), 1233.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[9]

D. Du, Y. Wu and K. Zhang, On blow-up criterion for the nonlinear Schrödinger equation,, Preprint., ().   Google Scholar

[10]

D. Foschi, Inhomogeneous Strichartz estimates,, \emph{J. Hyper. Diff. Eq.}, 2 (2005), 1.  doi: 10.1142/S0219891605000361.  Google Scholar

[11]

Z. Gan and J. Zhang, Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system,, \emph{Comm. Math. Phys.}, 283 (2008), 93.  doi: 10.1007/s00220-008-0456-y.  Google Scholar

[12]

J-M. Ghidaglia and J. C. Saut, On the initial value problem for the Davey-Stewartson systems,, \emph{Nonlinearity}, 3 (1990), 475.   Google Scholar

[13]

P. Gérard, Oscillations and concentration effects in semilinear dispersive wave equations,, \emph{J. Funct. Anal.}, 141 (1996), 60.  doi: 10.1006/jfan.1996.0122.  Google Scholar

[14]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3d cubic nonlinear Schrödinger equation,, \emph{Comm. Math. Phys.}, 282 (2008), 435.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[15]

J. Holmer and S. Roudenko, Divergence of infinite-variance nonradial solutions to the 3d NLS equation,, \emph{Comm, 35 (2010), 875.  doi: 10.1080/03605301003646713.  Google Scholar

[16]

S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation,, \emph{Analysis & PDE}, 4-3 (2011), 4.  doi: 10.2140/apde.2011.4.405.  Google Scholar

[17]

C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case,, \emph{Invent. Math.}, 166 (2006), 645.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[18]

C. Kenig, G. Ponce and L. Vega, On the Zakharov and Zakharov-Shulman systems,, \emph{J. Funct. Anal.}, 127 (1995), 204.  doi: 10.1006/jfan.1995.1009.  Google Scholar

[19]

S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equation,, \emph{J. Diff. Eq.}, 175 (2001), 353.  doi: 10.1006/jdeq.2000.3951.  Google Scholar

[20]

R. Killip, M. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher,, \emph{Anal. PDE}, 1 (2008), 229.  doi: 10.2140/apde.2008.1.229.  Google Scholar

[21]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data,, \emph{J. Funct. Anal.}, 253 (2007), 605.  doi: 10.1016/j.jfa.2007.09.008.  Google Scholar

[22]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the defocusing $H^{\frac12}$-subcritical Hartree equation in $R^d$,, \emph{Ann. I. H. Poincar$\acutee$-NA}, 26 (2009), 1831.  doi: 10.1016/j.anihpc.2009.01.003.  Google Scholar

[23]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the mass-critical Hartree equation with radial data,, \emph{J. Math. Pures Appl.}, 91 (2009), 49.  doi: 10.1016/j.matpur.2008.09.003.  Google Scholar

[24]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation in $\R^{1+n}$,, \emph{Comm. Partial. Diff. Eqn.}, 36 (2011), 729.  doi: 10.1080/03605302.2010.531073.  Google Scholar

[25]

K. Nishinari, K. Abe and J. Satsuma, Multidimensional behavior of an eletrostatic ion wave in a magnetized plasma,, \emph{Phys. Plasmas}, 1 (1994), 2559.   Google Scholar

[26]

M. Ohta, Instability of standing waves for the generalized Davey-Stewartson system,, \emph{Annales de l'I. H. P., 62 (1995), 69.   Google Scholar

[27]

G. C. Papanicolaou, C. Sulem, P-L. Sulem and X. P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves,, \emph{Physica D}, 72 (1994), 61.  doi: 10.1016/0167-2789(94)90167-8.  Google Scholar

[28]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse,, Springer-Verlag, (1999).   Google Scholar

[29]

M. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation,, \emph{Tran. Amer. Math. Soc.}, 359 (2007), 2123.  doi: 10.1090/S0002-9947-06-04099-2.  Google Scholar

[30]

V. Zakharov and E. Schulman, Integrability of nonlinear systems and perturbation theory,, in \emph{what is integrability?}(Zakharov, (): 189.   Google Scholar

[1]

Christian Klein, Benson Muite, Kristelle Roidot. Numerical study of blow-up in the Davey-Stewartson system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1361-1387. doi: 10.3934/dcdsb.2013.18.1361

[2]

Shiming Li, Yongsheng Li, Wei Yan. A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1899-1912. doi: 10.3934/dcdss.2016077

[3]

Olivier Goubet, Manal Hussein. Global attractor for the Davey-Stewartson system on $\mathbb R^2$. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1555-1575. doi: 10.3934/cpaa.2009.8.1555

[4]

Christian Klein, Jean-Claude Saut. A numerical approach to Blow-up issues for Davey-Stewartson II systems. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1443-1467. doi: 10.3934/cpaa.2015.14.1443

[5]

Uchida Hidetake. Analytic smoothing effect and global existence of small solutions for the elliptic-hyperbolic Davey-Stewartson system. Conference Publications, 2001, 2001 (Special) : 182-190. doi: 10.3934/proc.2001.2001.182

[6]

Zaihui Gan, Boling Guo, Jian Zhang. Sharp threshold of global existence for the generalized Davey-Stewartson system in $R^2$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 913-922. doi: 10.3934/cpaa.2009.8.913

[7]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[8]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[9]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[10]

Caroline Obrecht, J.-C. Saut. Remarks on the full dispersion Davey-Stewartson systems. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1547-1561. doi: 10.3934/cpaa.2015.14.1547

[11]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[12]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[13]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[14]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[15]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[16]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[17]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[18]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[19]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[20]

T. Colin, D. Lannes. Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 83-100. doi: 10.3934/dcds.2004.11.83

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]