January  2015, 14(1): 167-184. doi: 10.3934/cpaa.2015.14.167

General existence of solutions to dynamic programming equations

1. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260

2. 

Max-Planck Institut MiS Leipzig, Inselstr. 22, 04103 Leipzig, Germany

Received  December 2013 Revised  January 2014 Published  September 2014

We provide an alternative approach to the existence of solutions to dynamic programming equations arising in the discrete game-theoretic interpretations for various nonlinear partial differential equations including the infinity Laplacian, mean curvature flow and Hamilton-Jacobi type. Our general result is similar to Perron's method but adapted to the discrete situation.
Citation: Qing Liu, Armin Schikorra. General existence of solutions to dynamic programming equations. Communications on Pure and Applied Analysis, 2015, 14 (1) : 167-184. doi: 10.3934/cpaa.2015.14.167
References:
[1]

T. Antunović, Y. Peres, S. Sheffield and S. Somersille, Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition, Comm. Partial Differential Equations, 37 (2012), 1839-1869. doi: 10.1080/03605302.2011.642450.

[2]

S. N. Armstrong and C. K. Smart, An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions, Calc. Var. Partial Differential Equations, 37 (2010), 381-384. doi: 10.1007/s00526-009-0267-9.

[3]

S. N. Armstrong and C. K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games, Trans. Amer. Math. Soc., 364 (2012), 595-636. doi: 10.1090/S0002-9947-2011-05289-X.

[4]

S. N. Armstrong, C. K. Smart and S. J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions, Proc. Amer. Math. Soc., 139 (2011), 1763-1776. doi: 10.1090/S0002-9939-2010-10666-4.

[5]

M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 1997, doi: 10.1007/978-0-8176-4755-1.

[6]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., 4 (1991), 271-283.

[7]

F. Charro, J. García Azorero and J. D. Rossi, A mixed problem for the infinity Laplacian via tug-of-war games, Calc. Var. Partial Differential Equations, 34 (2009), 307-320. doi: 10.1007/s00526-008-0185-2.

[8]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.

[9]

Y. Giga and Q. Liu, A billiard-based game interpretation of the Neumann problem for the curve shortening equation, Adv. Differential Equations, 14 (2009), 201-240.

[10]

H. Ishii, Perron's method for Hamilton-Jacobi equations, Duke Math. J., 55 (1987), 369-384. doi: 10.1215/S0012-7094-87-05521-9.

[11]

H. Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type, Proc. Amer. Math. Soc., 100 (1987), 247-251. doi: 10.2307/2045953.

[12]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math., 59 (2006), 344-407. doi: 10.1002/cpa.20101.

[13]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations, Comm. Pure Appl. Math., 63 (2010), 1298-1350. doi: 10.1002/cpa.20336.

[14]

S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, vol. 13 of MSJ Memoirs, Mathematical Society of Japan, Tokyo, 2004.

[15]

E. Le Gruyer and J. C. Archer, Harmonious extensions, SIAM J. Math. Anal., 29 (1998), 279-292 (electronic). doi: 10.1137/S0036141095294067.

[16]

Q. Liu, Waiting time effect for motion by positive second derivatives and applications, Nonlinear Differential Equations Appl., 21 (2014), 589-620. doi: 10.1007/s00030-013-0259-5.

[17]

Q. Liu, Fattening and comparison principle for level-set equations of mean curvature type, SIAM J. Control Optim., 49 (2011), 2518-2541. doi: 10.1137/100814330.

[18]

Q. Liu and A. Schikorra, A game-tree approach to discrete infinity Laplacian with running costs,, preprint., (). 

[19]

H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of p-harmonious functions, Differential and Integral Equations, 27 (2014), 201-216.

[20]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal., 42 (2010), 2058-2081. doi: 10.1137/100782073.

[21]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for p-harmonic functions, Proc. Amer. Math. Soc., 138 (2010), 881-889. doi: 10.1090/S0002-9939-09-10183-1.

[22]

J. J. Manfredi, J. D. Rossi and S. Somersille, An obstacle problem for tug-of-war games,, preprint., (). 

[23]

Y. Peres, G. Pete and S. Somersille, Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones, Calc. Var. Partial Differential Equations, 38 (2010), 541-564. doi: 10.1007/s00526-009-0298-2.

[24]

Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167-210. doi: 10.1090/S0894-0347-08-00606-1.

[25]

Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the p-Laplacian, Duke Math. J., 145 (2008), 91-120. doi: 10.1215/00127094-2008-048.

[26]

M. B. Rudd and H. A. Van Dyke, Median values, 1-harmonic functions, and functions of least gradient, Commun. Pure Appl. Anal., 12 (2013), 711-719. doi: 10.3934/cpaa.2013.12.711.

show all references

References:
[1]

T. Antunović, Y. Peres, S. Sheffield and S. Somersille, Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition, Comm. Partial Differential Equations, 37 (2012), 1839-1869. doi: 10.1080/03605302.2011.642450.

[2]

S. N. Armstrong and C. K. Smart, An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions, Calc. Var. Partial Differential Equations, 37 (2010), 381-384. doi: 10.1007/s00526-009-0267-9.

[3]

S. N. Armstrong and C. K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games, Trans. Amer. Math. Soc., 364 (2012), 595-636. doi: 10.1090/S0002-9947-2011-05289-X.

[4]

S. N. Armstrong, C. K. Smart and S. J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions, Proc. Amer. Math. Soc., 139 (2011), 1763-1776. doi: 10.1090/S0002-9939-2010-10666-4.

[5]

M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 1997, doi: 10.1007/978-0-8176-4755-1.

[6]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., 4 (1991), 271-283.

[7]

F. Charro, J. García Azorero and J. D. Rossi, A mixed problem for the infinity Laplacian via tug-of-war games, Calc. Var. Partial Differential Equations, 34 (2009), 307-320. doi: 10.1007/s00526-008-0185-2.

[8]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.

[9]

Y. Giga and Q. Liu, A billiard-based game interpretation of the Neumann problem for the curve shortening equation, Adv. Differential Equations, 14 (2009), 201-240.

[10]

H. Ishii, Perron's method for Hamilton-Jacobi equations, Duke Math. J., 55 (1987), 369-384. doi: 10.1215/S0012-7094-87-05521-9.

[11]

H. Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type, Proc. Amer. Math. Soc., 100 (1987), 247-251. doi: 10.2307/2045953.

[12]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math., 59 (2006), 344-407. doi: 10.1002/cpa.20101.

[13]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations, Comm. Pure Appl. Math., 63 (2010), 1298-1350. doi: 10.1002/cpa.20336.

[14]

S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, vol. 13 of MSJ Memoirs, Mathematical Society of Japan, Tokyo, 2004.

[15]

E. Le Gruyer and J. C. Archer, Harmonious extensions, SIAM J. Math. Anal., 29 (1998), 279-292 (electronic). doi: 10.1137/S0036141095294067.

[16]

Q. Liu, Waiting time effect for motion by positive second derivatives and applications, Nonlinear Differential Equations Appl., 21 (2014), 589-620. doi: 10.1007/s00030-013-0259-5.

[17]

Q. Liu, Fattening and comparison principle for level-set equations of mean curvature type, SIAM J. Control Optim., 49 (2011), 2518-2541. doi: 10.1137/100814330.

[18]

Q. Liu and A. Schikorra, A game-tree approach to discrete infinity Laplacian with running costs,, preprint., (). 

[19]

H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of p-harmonious functions, Differential and Integral Equations, 27 (2014), 201-216.

[20]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal., 42 (2010), 2058-2081. doi: 10.1137/100782073.

[21]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for p-harmonic functions, Proc. Amer. Math. Soc., 138 (2010), 881-889. doi: 10.1090/S0002-9939-09-10183-1.

[22]

J. J. Manfredi, J. D. Rossi and S. Somersille, An obstacle problem for tug-of-war games,, preprint., (). 

[23]

Y. Peres, G. Pete and S. Somersille, Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones, Calc. Var. Partial Differential Equations, 38 (2010), 541-564. doi: 10.1007/s00526-009-0298-2.

[24]

Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167-210. doi: 10.1090/S0894-0347-08-00606-1.

[25]

Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the p-Laplacian, Duke Math. J., 145 (2008), 91-120. doi: 10.1215/00127094-2008-048.

[26]

M. B. Rudd and H. A. Van Dyke, Median values, 1-harmonic functions, and functions of least gradient, Commun. Pure Appl. Anal., 12 (2013), 711-719. doi: 10.3934/cpaa.2013.12.711.

[1]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[2]

Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032

[3]

Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345

[4]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[5]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[6]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[7]

Phuong Nguyen, Roger Temam. The stampacchia maximum principle for stochastic partial differential equations forced by lévy noise. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2289-2331. doi: 10.3934/cpaa.2020100

[8]

Paul Bracken. Connections of zero curvature and applications to nonlinear partial differential equations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1165-1179. doi: 10.3934/dcdss.2014.7.1165

[9]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

[10]

Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007

[11]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic and Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[12]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete and Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[13]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[14]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[15]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[16]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[17]

Runzhang Xu. Preface: Special issue on advances in partial differential equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : i-i. doi: 10.3934/dcdss.2021137

[18]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[19]

Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097

[20]

Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial and Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (237)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]