January  2015, 14(1): 167-184. doi: 10.3934/cpaa.2015.14.167

General existence of solutions to dynamic programming equations

1. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260

2. 

Max-Planck Institut MiS Leipzig, Inselstr. 22, 04103 Leipzig, Germany

Received  December 2013 Revised  January 2014 Published  September 2014

We provide an alternative approach to the existence of solutions to dynamic programming equations arising in the discrete game-theoretic interpretations for various nonlinear partial differential equations including the infinity Laplacian, mean curvature flow and Hamilton-Jacobi type. Our general result is similar to Perron's method but adapted to the discrete situation.
Citation: Qing Liu, Armin Schikorra. General existence of solutions to dynamic programming equations. Communications on Pure & Applied Analysis, 2015, 14 (1) : 167-184. doi: 10.3934/cpaa.2015.14.167
References:
[1]

T. Antunović, Y. Peres, S. Sheffield and S. Somersille, Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition,, \emph{Comm. Partial Differential Equations}, 37 (2012), 1839.  doi: 10.1080/03605302.2011.642450.  Google Scholar

[2]

S. N. Armstrong and C. K. Smart, An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions,, \emph{Calc. Var. Partial Differential Equations}, 37 (2010), 381.  doi: 10.1007/s00526-009-0267-9.  Google Scholar

[3]

S. N. Armstrong and C. K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games,, \emph{Trans. Amer. Math. Soc.}, 364 (2012), 595.  doi: 10.1090/S0002-9947-2011-05289-X.  Google Scholar

[4]

S. N. Armstrong, C. K. Smart and S. J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions,, \emph{Proc. Amer. Math. Soc.}, 139 (2011), 1763.  doi: 10.1090/S0002-9939-2010-10666-4.  Google Scholar

[5]

M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,, Systems & Control: Foundations & Applications, (1997).  doi: 10.1007/978-0-8176-4755-1.  Google Scholar

[6]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations,, \emph{Asymptotic Anal.}, 4 (1991), 271.   Google Scholar

[7]

F. Charro, J. García Azorero and J. D. Rossi, A mixed problem for the infinity Laplacian via tug-of-war games,, \emph{Calc. Var. Partial Differential Equations}, 34 (2009), 307.  doi: 10.1007/s00526-008-0185-2.  Google Scholar

[8]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[9]

Y. Giga and Q. Liu, A billiard-based game interpretation of the Neumann problem for the curve shortening equation,, \emph{Adv. Differential Equations}, 14 (2009), 201.   Google Scholar

[10]

H. Ishii, Perron's method for Hamilton-Jacobi equations,, \emph{Duke Math. J.}, 55 (1987), 369.  doi: 10.1215/S0012-7094-87-05521-9.  Google Scholar

[11]

H. Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type,, \emph{Proc. Amer. Math. Soc.}, 100 (1987), 247.  doi: 10.2307/2045953.  Google Scholar

[12]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 344.  doi: 10.1002/cpa.20101.  Google Scholar

[13]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations,, \emph{Comm. Pure Appl. Math.}, 63 (2010), 1298.  doi: 10.1002/cpa.20336.  Google Scholar

[14]

S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions,, vol. 13 of MSJ Memoirs, (2004).   Google Scholar

[15]

E. Le Gruyer and J. C. Archer, Harmonious extensions,, \emph{SIAM J. Math. Anal.}, 29 (1998), 279.  doi: 10.1137/S0036141095294067.  Google Scholar

[16]

Q. Liu, Waiting time effect for motion by positive second derivatives and applications,, \emph{Nonlinear Differential Equations Appl.}, 21 (2014), 589.  doi: 10.1007/s00030-013-0259-5.  Google Scholar

[17]

Q. Liu, Fattening and comparison principle for level-set equations of mean curvature type,, \emph{SIAM J. Control Optim.}, 49 (2011), 2518.  doi: 10.1137/100814330.  Google Scholar

[18]

Q. Liu and A. Schikorra, A game-tree approach to discrete infinity Laplacian with running costs,, preprint., ().   Google Scholar

[19]

H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of p-harmonious functions,, \emph{Differential and Integral Equations}, 27 (2014), 201.   Google Scholar

[20]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, \emph{SIAM J. Math. Anal.}, 42 (2010), 2058.  doi: 10.1137/100782073.  Google Scholar

[21]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for p-harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 138 (2010), 881.  doi: 10.1090/S0002-9939-09-10183-1.  Google Scholar

[22]

J. J. Manfredi, J. D. Rossi and S. Somersille, An obstacle problem for tug-of-war games,, preprint., ().   Google Scholar

[23]

Y. Peres, G. Pete and S. Somersille, Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones,, \emph{Calc. Var. Partial Differential Equations}, 38 (2010), 541.  doi: 10.1007/s00526-009-0298-2.  Google Scholar

[24]

Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian,, \emph{J. Amer. Math. Soc.}, 22 (2009), 167.  doi: 10.1090/S0894-0347-08-00606-1.  Google Scholar

[25]

Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the p-Laplacian,, \emph{Duke Math. J.}, 145 (2008), 91.  doi: 10.1215/00127094-2008-048.  Google Scholar

[26]

M. B. Rudd and H. A. Van Dyke, Median values, 1-harmonic functions, and functions of least gradient,, \emph{Commun. Pure Appl. Anal.}, 12 (2013), 711.  doi: 10.3934/cpaa.2013.12.711.  Google Scholar

show all references

References:
[1]

T. Antunović, Y. Peres, S. Sheffield and S. Somersille, Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition,, \emph{Comm. Partial Differential Equations}, 37 (2012), 1839.  doi: 10.1080/03605302.2011.642450.  Google Scholar

[2]

S. N. Armstrong and C. K. Smart, An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions,, \emph{Calc. Var. Partial Differential Equations}, 37 (2010), 381.  doi: 10.1007/s00526-009-0267-9.  Google Scholar

[3]

S. N. Armstrong and C. K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games,, \emph{Trans. Amer. Math. Soc.}, 364 (2012), 595.  doi: 10.1090/S0002-9947-2011-05289-X.  Google Scholar

[4]

S. N. Armstrong, C. K. Smart and S. J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions,, \emph{Proc. Amer. Math. Soc.}, 139 (2011), 1763.  doi: 10.1090/S0002-9939-2010-10666-4.  Google Scholar

[5]

M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,, Systems & Control: Foundations & Applications, (1997).  doi: 10.1007/978-0-8176-4755-1.  Google Scholar

[6]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations,, \emph{Asymptotic Anal.}, 4 (1991), 271.   Google Scholar

[7]

F. Charro, J. García Azorero and J. D. Rossi, A mixed problem for the infinity Laplacian via tug-of-war games,, \emph{Calc. Var. Partial Differential Equations}, 34 (2009), 307.  doi: 10.1007/s00526-008-0185-2.  Google Scholar

[8]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[9]

Y. Giga and Q. Liu, A billiard-based game interpretation of the Neumann problem for the curve shortening equation,, \emph{Adv. Differential Equations}, 14 (2009), 201.   Google Scholar

[10]

H. Ishii, Perron's method for Hamilton-Jacobi equations,, \emph{Duke Math. J.}, 55 (1987), 369.  doi: 10.1215/S0012-7094-87-05521-9.  Google Scholar

[11]

H. Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type,, \emph{Proc. Amer. Math. Soc.}, 100 (1987), 247.  doi: 10.2307/2045953.  Google Scholar

[12]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 344.  doi: 10.1002/cpa.20101.  Google Scholar

[13]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations,, \emph{Comm. Pure Appl. Math.}, 63 (2010), 1298.  doi: 10.1002/cpa.20336.  Google Scholar

[14]

S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions,, vol. 13 of MSJ Memoirs, (2004).   Google Scholar

[15]

E. Le Gruyer and J. C. Archer, Harmonious extensions,, \emph{SIAM J. Math. Anal.}, 29 (1998), 279.  doi: 10.1137/S0036141095294067.  Google Scholar

[16]

Q. Liu, Waiting time effect for motion by positive second derivatives and applications,, \emph{Nonlinear Differential Equations Appl.}, 21 (2014), 589.  doi: 10.1007/s00030-013-0259-5.  Google Scholar

[17]

Q. Liu, Fattening and comparison principle for level-set equations of mean curvature type,, \emph{SIAM J. Control Optim.}, 49 (2011), 2518.  doi: 10.1137/100814330.  Google Scholar

[18]

Q. Liu and A. Schikorra, A game-tree approach to discrete infinity Laplacian with running costs,, preprint., ().   Google Scholar

[19]

H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of p-harmonious functions,, \emph{Differential and Integral Equations}, 27 (2014), 201.   Google Scholar

[20]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, \emph{SIAM J. Math. Anal.}, 42 (2010), 2058.  doi: 10.1137/100782073.  Google Scholar

[21]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for p-harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 138 (2010), 881.  doi: 10.1090/S0002-9939-09-10183-1.  Google Scholar

[22]

J. J. Manfredi, J. D. Rossi and S. Somersille, An obstacle problem for tug-of-war games,, preprint., ().   Google Scholar

[23]

Y. Peres, G. Pete and S. Somersille, Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones,, \emph{Calc. Var. Partial Differential Equations}, 38 (2010), 541.  doi: 10.1007/s00526-009-0298-2.  Google Scholar

[24]

Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian,, \emph{J. Amer. Math. Soc.}, 22 (2009), 167.  doi: 10.1090/S0894-0347-08-00606-1.  Google Scholar

[25]

Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the p-Laplacian,, \emph{Duke Math. J.}, 145 (2008), 91.  doi: 10.1215/00127094-2008-048.  Google Scholar

[26]

M. B. Rudd and H. A. Van Dyke, Median values, 1-harmonic functions, and functions of least gradient,, \emph{Commun. Pure Appl. Anal.}, 12 (2013), 711.  doi: 10.3934/cpaa.2013.12.711.  Google Scholar

[1]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[4]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[6]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[7]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[8]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[9]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[10]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[11]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[12]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[13]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[14]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[16]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[17]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[18]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[19]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[20]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (126)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]