January  2015, 14(1): 167-184. doi: 10.3934/cpaa.2015.14.167

General existence of solutions to dynamic programming equations

1. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260

2. 

Max-Planck Institut MiS Leipzig, Inselstr. 22, 04103 Leipzig, Germany

Received  December 2013 Revised  January 2014 Published  September 2014

We provide an alternative approach to the existence of solutions to dynamic programming equations arising in the discrete game-theoretic interpretations for various nonlinear partial differential equations including the infinity Laplacian, mean curvature flow and Hamilton-Jacobi type. Our general result is similar to Perron's method but adapted to the discrete situation.
Citation: Qing Liu, Armin Schikorra. General existence of solutions to dynamic programming equations. Communications on Pure & Applied Analysis, 2015, 14 (1) : 167-184. doi: 10.3934/cpaa.2015.14.167
References:
[1]

T. Antunović, Y. Peres, S. Sheffield and S. Somersille, Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition,, \emph{Comm. Partial Differential Equations}, 37 (2012), 1839.  doi: 10.1080/03605302.2011.642450.  Google Scholar

[2]

S. N. Armstrong and C. K. Smart, An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions,, \emph{Calc. Var. Partial Differential Equations}, 37 (2010), 381.  doi: 10.1007/s00526-009-0267-9.  Google Scholar

[3]

S. N. Armstrong and C. K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games,, \emph{Trans. Amer. Math. Soc.}, 364 (2012), 595.  doi: 10.1090/S0002-9947-2011-05289-X.  Google Scholar

[4]

S. N. Armstrong, C. K. Smart and S. J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions,, \emph{Proc. Amer. Math. Soc.}, 139 (2011), 1763.  doi: 10.1090/S0002-9939-2010-10666-4.  Google Scholar

[5]

M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,, Systems & Control: Foundations & Applications, (1997).  doi: 10.1007/978-0-8176-4755-1.  Google Scholar

[6]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations,, \emph{Asymptotic Anal.}, 4 (1991), 271.   Google Scholar

[7]

F. Charro, J. García Azorero and J. D. Rossi, A mixed problem for the infinity Laplacian via tug-of-war games,, \emph{Calc. Var. Partial Differential Equations}, 34 (2009), 307.  doi: 10.1007/s00526-008-0185-2.  Google Scholar

[8]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[9]

Y. Giga and Q. Liu, A billiard-based game interpretation of the Neumann problem for the curve shortening equation,, \emph{Adv. Differential Equations}, 14 (2009), 201.   Google Scholar

[10]

H. Ishii, Perron's method for Hamilton-Jacobi equations,, \emph{Duke Math. J.}, 55 (1987), 369.  doi: 10.1215/S0012-7094-87-05521-9.  Google Scholar

[11]

H. Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type,, \emph{Proc. Amer. Math. Soc.}, 100 (1987), 247.  doi: 10.2307/2045953.  Google Scholar

[12]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 344.  doi: 10.1002/cpa.20101.  Google Scholar

[13]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations,, \emph{Comm. Pure Appl. Math.}, 63 (2010), 1298.  doi: 10.1002/cpa.20336.  Google Scholar

[14]

S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions,, vol. 13 of MSJ Memoirs, (2004).   Google Scholar

[15]

E. Le Gruyer and J. C. Archer, Harmonious extensions,, \emph{SIAM J. Math. Anal.}, 29 (1998), 279.  doi: 10.1137/S0036141095294067.  Google Scholar

[16]

Q. Liu, Waiting time effect for motion by positive second derivatives and applications,, \emph{Nonlinear Differential Equations Appl.}, 21 (2014), 589.  doi: 10.1007/s00030-013-0259-5.  Google Scholar

[17]

Q. Liu, Fattening and comparison principle for level-set equations of mean curvature type,, \emph{SIAM J. Control Optim.}, 49 (2011), 2518.  doi: 10.1137/100814330.  Google Scholar

[18]

Q. Liu and A. Schikorra, A game-tree approach to discrete infinity Laplacian with running costs,, preprint., ().   Google Scholar

[19]

H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of p-harmonious functions,, \emph{Differential and Integral Equations}, 27 (2014), 201.   Google Scholar

[20]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, \emph{SIAM J. Math. Anal.}, 42 (2010), 2058.  doi: 10.1137/100782073.  Google Scholar

[21]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for p-harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 138 (2010), 881.  doi: 10.1090/S0002-9939-09-10183-1.  Google Scholar

[22]

J. J. Manfredi, J. D. Rossi and S. Somersille, An obstacle problem for tug-of-war games,, preprint., ().   Google Scholar

[23]

Y. Peres, G. Pete and S. Somersille, Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones,, \emph{Calc. Var. Partial Differential Equations}, 38 (2010), 541.  doi: 10.1007/s00526-009-0298-2.  Google Scholar

[24]

Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian,, \emph{J. Amer. Math. Soc.}, 22 (2009), 167.  doi: 10.1090/S0894-0347-08-00606-1.  Google Scholar

[25]

Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the p-Laplacian,, \emph{Duke Math. J.}, 145 (2008), 91.  doi: 10.1215/00127094-2008-048.  Google Scholar

[26]

M. B. Rudd and H. A. Van Dyke, Median values, 1-harmonic functions, and functions of least gradient,, \emph{Commun. Pure Appl. Anal.}, 12 (2013), 711.  doi: 10.3934/cpaa.2013.12.711.  Google Scholar

show all references

References:
[1]

T. Antunović, Y. Peres, S. Sheffield and S. Somersille, Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition,, \emph{Comm. Partial Differential Equations}, 37 (2012), 1839.  doi: 10.1080/03605302.2011.642450.  Google Scholar

[2]

S. N. Armstrong and C. K. Smart, An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions,, \emph{Calc. Var. Partial Differential Equations}, 37 (2010), 381.  doi: 10.1007/s00526-009-0267-9.  Google Scholar

[3]

S. N. Armstrong and C. K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games,, \emph{Trans. Amer. Math. Soc.}, 364 (2012), 595.  doi: 10.1090/S0002-9947-2011-05289-X.  Google Scholar

[4]

S. N. Armstrong, C. K. Smart and S. J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions,, \emph{Proc. Amer. Math. Soc.}, 139 (2011), 1763.  doi: 10.1090/S0002-9939-2010-10666-4.  Google Scholar

[5]

M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,, Systems & Control: Foundations & Applications, (1997).  doi: 10.1007/978-0-8176-4755-1.  Google Scholar

[6]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations,, \emph{Asymptotic Anal.}, 4 (1991), 271.   Google Scholar

[7]

F. Charro, J. García Azorero and J. D. Rossi, A mixed problem for the infinity Laplacian via tug-of-war games,, \emph{Calc. Var. Partial Differential Equations}, 34 (2009), 307.  doi: 10.1007/s00526-008-0185-2.  Google Scholar

[8]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[9]

Y. Giga and Q. Liu, A billiard-based game interpretation of the Neumann problem for the curve shortening equation,, \emph{Adv. Differential Equations}, 14 (2009), 201.   Google Scholar

[10]

H. Ishii, Perron's method for Hamilton-Jacobi equations,, \emph{Duke Math. J.}, 55 (1987), 369.  doi: 10.1215/S0012-7094-87-05521-9.  Google Scholar

[11]

H. Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type,, \emph{Proc. Amer. Math. Soc.}, 100 (1987), 247.  doi: 10.2307/2045953.  Google Scholar

[12]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 344.  doi: 10.1002/cpa.20101.  Google Scholar

[13]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations,, \emph{Comm. Pure Appl. Math.}, 63 (2010), 1298.  doi: 10.1002/cpa.20336.  Google Scholar

[14]

S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions,, vol. 13 of MSJ Memoirs, (2004).   Google Scholar

[15]

E. Le Gruyer and J. C. Archer, Harmonious extensions,, \emph{SIAM J. Math. Anal.}, 29 (1998), 279.  doi: 10.1137/S0036141095294067.  Google Scholar

[16]

Q. Liu, Waiting time effect for motion by positive second derivatives and applications,, \emph{Nonlinear Differential Equations Appl.}, 21 (2014), 589.  doi: 10.1007/s00030-013-0259-5.  Google Scholar

[17]

Q. Liu, Fattening and comparison principle for level-set equations of mean curvature type,, \emph{SIAM J. Control Optim.}, 49 (2011), 2518.  doi: 10.1137/100814330.  Google Scholar

[18]

Q. Liu and A. Schikorra, A game-tree approach to discrete infinity Laplacian with running costs,, preprint., ().   Google Scholar

[19]

H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of p-harmonious functions,, \emph{Differential and Integral Equations}, 27 (2014), 201.   Google Scholar

[20]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, \emph{SIAM J. Math. Anal.}, 42 (2010), 2058.  doi: 10.1137/100782073.  Google Scholar

[21]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for p-harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 138 (2010), 881.  doi: 10.1090/S0002-9939-09-10183-1.  Google Scholar

[22]

J. J. Manfredi, J. D. Rossi and S. Somersille, An obstacle problem for tug-of-war games,, preprint., ().   Google Scholar

[23]

Y. Peres, G. Pete and S. Somersille, Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones,, \emph{Calc. Var. Partial Differential Equations}, 38 (2010), 541.  doi: 10.1007/s00526-009-0298-2.  Google Scholar

[24]

Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian,, \emph{J. Amer. Math. Soc.}, 22 (2009), 167.  doi: 10.1090/S0894-0347-08-00606-1.  Google Scholar

[25]

Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the p-Laplacian,, \emph{Duke Math. J.}, 145 (2008), 91.  doi: 10.1215/00127094-2008-048.  Google Scholar

[26]

M. B. Rudd and H. A. Van Dyke, Median values, 1-harmonic functions, and functions of least gradient,, \emph{Commun. Pure Appl. Anal.}, 12 (2013), 711.  doi: 10.3934/cpaa.2013.12.711.  Google Scholar

[1]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[2]

Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032

[3]

Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345

[4]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[5]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[6]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019213

[7]

Paul Bracken. Connections of zero curvature and applications to nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1165-1179. doi: 10.3934/dcdss.2014.7.1165

[8]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

[9]

Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007

[10]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[11]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[12]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[13]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[14]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[15]

Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097

[16]

Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial & Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27

[17]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[18]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[19]

Li Jin, Hongying Huang. Differential equation method based on approximate augmented Lagrangian for nonlinear programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2019053

[20]

Wolfgang Walter. Nonlinear parabolic differential equations and inequalities. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 451-468. doi: 10.3934/dcds.2002.8.451

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]