• Previous Article
    Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay
  • CPAA Home
  • This Issue
  • Next Article
    Sharp threshold for scattering of a generalized Davey-Stewartson system in three dimension
September  2015, 14(5): 1671-1683. doi: 10.3934/cpaa.2015.14.1671

On global solutions in one-dimensional thermoelasticity with second sound in the half line

1. 

Department of Mathematics, China University of Mining and Technology, Beijing, 100083, China

2. 

Department of Mathematics, Tianjin University of Technology, Tianjin 300384, China

Received  December 2013 Revised  March 2014 Published  June 2015

In this paper, we investigate the initial boundary value problem for one-dimensional thermoelasticity with second sound in the half line. By using delicate energy estimates, together with a special form of Helmholtz free energy, we are able to show the global solutions exist under the Dirichlet boundary condition if the initial data are sufficient small.
Citation: Yuxi Hu, Na Wang. On global solutions in one-dimensional thermoelasticity with second sound in the half line. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1671-1683. doi: 10.3934/cpaa.2015.14.1671
References:
[1]

K. Beauchard and E. Zuazua, Large time asymptotics for partially dissipative hyperbolic systems,, \emph{Arch. Ration. Mech. Anal.}, 199 (2011), 177.  doi: 10.1007/s00205-010-0321-y.  Google Scholar

[2]

C. Benzoni-Gavage and D. Serre, Multi-dimensional Hyperbolic Partial Differential Equations-First-order Systems and Application,, Clarendon Press, (2007).   Google Scholar

[3]

S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy,, \emph{Comm. Pure Appl. Math.}, 60 (2007), 1559.  doi: 10.1002/cpa.20195.  Google Scholar

[4]

C. M. Dafermos and L. Hsiao, Development of singularities in solutions of the equations of nonlinear thermoelasticity,, \emph{Quart. Appl. Math.}, 44 (1986), 463.   Google Scholar

[5]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems-Cattaneo versus Fourier law,, \emph{Arch. Ration. Mech. Anal.}, 194 (2009), 221.  doi: 10.1007/s00205-009-0220-2.  Google Scholar

[6]

I. Hansen, Lebensdauer von klassischen Lösungen nichtlinearer Thermoelastizitätsgleichungen,, Diploma thesis, (1994).   Google Scholar

[7]

Y. Hu, Global solvability in thermoelasticity with second sound on the semi-axis,, \emph{J. Part. Diff. Eq.}, 25 (2012), 37.   Google Scholar

[8]

Y. Hu and R. Racke, Formation of singularities in one-dimensional thermoelasticity with second sound,, \emph{Quart. Appl. Math.}, 72 (2014), 311.  doi: 10.1090/S0033-569X-2014-01336-2.  Google Scholar

[9]

T. J. R. Hughes, T. Kato and J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relaticity,, \emph{Arch. Rational Mech. Anal.}, 63 (1977), 273.   Google Scholar

[10]

W. J. Hrusa and S. A. Messaoudi, On formation of singularities in one-dimensional nonlinear thermoelasticity,, \emph{Arch. Ration. Mech. Anal.}, 111 (1990), 135.  doi: 10.1007/BF00375405.  Google Scholar

[11]

W. J. Hrusa and M. A. Tarabek, On smooth solutions of the Cauchy problem in one-dimensional nonlinear thermoelasticity,, \emph{Quart. Appl. Math.}, 47 (1989), 631.   Google Scholar

[12]

S. Jiang, Global existence and asymptotic behavior of smooth solutions in one-dimensional nonlinear thermoelasticity,, \emph{Proc. Roy. Soc. Edinburgh}, 115A (1990), 257.  doi: 10.1017/S0308210500020631.  Google Scholar

[13]

S. Jiang, Global solutions of the Dirichlet problem in one-dimensional nonlinear thermoelasticity,, \emph{SFB, 138 (1990).   Google Scholar

[14]

S. Jiang, On global smooth solutions to the one-dimensional equations of nonlnear inhomogeneous thermoelasticity,, \emph{Nonlinear Anal., 20 (1993), 1245.  doi: 10.1016/0362-546X(93)90154-K.  Google Scholar

[15]

S. Jiang and R. Racke, Evolution Equations in Thermoelasticity,, Chapman and Hall/CRC Monographs and Surveys in Pure and Appl. Math. Vol. 112, (2000).   Google Scholar

[16]

A. Kasimov, R. Racke and B. Said-Houari, Global existence and decay properties for solutions of the Cauchy problem in one-dimensional thermoelasticity with second sound,, \emph{Applicable Analysis}, 93 (2014), 911.  doi: 10.1080/00036811.2013.801457.  Google Scholar

[17]

T.-T, Li, Global Classical Solutions for Quasilinear Hyperbolic Systems,, Masson, (1994).   Google Scholar

[18]

S. A. Messaoudi and B. Said-Houari, Exponetial stability in one-dimensional non-linear thermoelasticity with second sound,, \emph{Math. Methods Appl. Sci.}, 28 (2005), 205.  doi: 10.1002/mma.556.  Google Scholar

[19]

R. Racke and Y. Shibata, Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity,, \emph{Arch. Rational Mech. Anal.}, 116 (1991), 1.  doi: 10.1007/BF00375601.  Google Scholar

[20]

R. Racke and Y. Shibada, Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity,, \emph{Quart. Appl. Math.}, 51 (1993), 751.   Google Scholar

[21]

R. Racke, Thermoelasticity with second sound--Exponential stability in linear and non-linear 1-d,, \emph{Math. Meth. Appl. Sci.}, 25 (2002), 409.  doi: 10.1002/mma.298.  Google Scholar

[22]

R. Racke, Thermoelasticity, Handbook of Differential Equations,, Chapter 4, (2009), 315.  doi: 10.1016/S1874-5717(08)00211-9.  Google Scholar

[23]

R. Racke and Y. G. Wang, Nonlinear well-posedness and rates of decay in thermoelasticity with second sound,, \emph{J. Hyperbolic Differential Equations}, 5 (2008), 25.  doi: 10.1142/S021989160800143X.  Google Scholar

[24]

J. E. M. Rivera, Energy decay rates in linear thermoelasticity,, \emph{Funkcial. Ekvac.}, 35 (1992), 19.   Google Scholar

[25]

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation,, \emph{Hokkaido Math. J.}, 14 (1995), 249.  doi: 10.14492/hokmj/1381757663.  Google Scholar

[26]

M. A. Tarabek, On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound,, \emph{Quart. Appl. Math.}, 50 (1992), 727.   Google Scholar

show all references

References:
[1]

K. Beauchard and E. Zuazua, Large time asymptotics for partially dissipative hyperbolic systems,, \emph{Arch. Ration. Mech. Anal.}, 199 (2011), 177.  doi: 10.1007/s00205-010-0321-y.  Google Scholar

[2]

C. Benzoni-Gavage and D. Serre, Multi-dimensional Hyperbolic Partial Differential Equations-First-order Systems and Application,, Clarendon Press, (2007).   Google Scholar

[3]

S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy,, \emph{Comm. Pure Appl. Math.}, 60 (2007), 1559.  doi: 10.1002/cpa.20195.  Google Scholar

[4]

C. M. Dafermos and L. Hsiao, Development of singularities in solutions of the equations of nonlinear thermoelasticity,, \emph{Quart. Appl. Math.}, 44 (1986), 463.   Google Scholar

[5]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems-Cattaneo versus Fourier law,, \emph{Arch. Ration. Mech. Anal.}, 194 (2009), 221.  doi: 10.1007/s00205-009-0220-2.  Google Scholar

[6]

I. Hansen, Lebensdauer von klassischen Lösungen nichtlinearer Thermoelastizitätsgleichungen,, Diploma thesis, (1994).   Google Scholar

[7]

Y. Hu, Global solvability in thermoelasticity with second sound on the semi-axis,, \emph{J. Part. Diff. Eq.}, 25 (2012), 37.   Google Scholar

[8]

Y. Hu and R. Racke, Formation of singularities in one-dimensional thermoelasticity with second sound,, \emph{Quart. Appl. Math.}, 72 (2014), 311.  doi: 10.1090/S0033-569X-2014-01336-2.  Google Scholar

[9]

T. J. R. Hughes, T. Kato and J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relaticity,, \emph{Arch. Rational Mech. Anal.}, 63 (1977), 273.   Google Scholar

[10]

W. J. Hrusa and S. A. Messaoudi, On formation of singularities in one-dimensional nonlinear thermoelasticity,, \emph{Arch. Ration. Mech. Anal.}, 111 (1990), 135.  doi: 10.1007/BF00375405.  Google Scholar

[11]

W. J. Hrusa and M. A. Tarabek, On smooth solutions of the Cauchy problem in one-dimensional nonlinear thermoelasticity,, \emph{Quart. Appl. Math.}, 47 (1989), 631.   Google Scholar

[12]

S. Jiang, Global existence and asymptotic behavior of smooth solutions in one-dimensional nonlinear thermoelasticity,, \emph{Proc. Roy. Soc. Edinburgh}, 115A (1990), 257.  doi: 10.1017/S0308210500020631.  Google Scholar

[13]

S. Jiang, Global solutions of the Dirichlet problem in one-dimensional nonlinear thermoelasticity,, \emph{SFB, 138 (1990).   Google Scholar

[14]

S. Jiang, On global smooth solutions to the one-dimensional equations of nonlnear inhomogeneous thermoelasticity,, \emph{Nonlinear Anal., 20 (1993), 1245.  doi: 10.1016/0362-546X(93)90154-K.  Google Scholar

[15]

S. Jiang and R. Racke, Evolution Equations in Thermoelasticity,, Chapman and Hall/CRC Monographs and Surveys in Pure and Appl. Math. Vol. 112, (2000).   Google Scholar

[16]

A. Kasimov, R. Racke and B. Said-Houari, Global existence and decay properties for solutions of the Cauchy problem in one-dimensional thermoelasticity with second sound,, \emph{Applicable Analysis}, 93 (2014), 911.  doi: 10.1080/00036811.2013.801457.  Google Scholar

[17]

T.-T, Li, Global Classical Solutions for Quasilinear Hyperbolic Systems,, Masson, (1994).   Google Scholar

[18]

S. A. Messaoudi and B. Said-Houari, Exponetial stability in one-dimensional non-linear thermoelasticity with second sound,, \emph{Math. Methods Appl. Sci.}, 28 (2005), 205.  doi: 10.1002/mma.556.  Google Scholar

[19]

R. Racke and Y. Shibata, Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity,, \emph{Arch. Rational Mech. Anal.}, 116 (1991), 1.  doi: 10.1007/BF00375601.  Google Scholar

[20]

R. Racke and Y. Shibada, Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity,, \emph{Quart. Appl. Math.}, 51 (1993), 751.   Google Scholar

[21]

R. Racke, Thermoelasticity with second sound--Exponential stability in linear and non-linear 1-d,, \emph{Math. Meth. Appl. Sci.}, 25 (2002), 409.  doi: 10.1002/mma.298.  Google Scholar

[22]

R. Racke, Thermoelasticity, Handbook of Differential Equations,, Chapter 4, (2009), 315.  doi: 10.1016/S1874-5717(08)00211-9.  Google Scholar

[23]

R. Racke and Y. G. Wang, Nonlinear well-posedness and rates of decay in thermoelasticity with second sound,, \emph{J. Hyperbolic Differential Equations}, 5 (2008), 25.  doi: 10.1142/S021989160800143X.  Google Scholar

[24]

J. E. M. Rivera, Energy decay rates in linear thermoelasticity,, \emph{Funkcial. Ekvac.}, 35 (1992), 19.   Google Scholar

[25]

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation,, \emph{Hokkaido Math. J.}, 14 (1995), 249.  doi: 10.14492/hokmj/1381757663.  Google Scholar

[26]

M. A. Tarabek, On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound,, \emph{Quart. Appl. Math.}, 50 (1992), 727.   Google Scholar

[1]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[2]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[3]

Makram Hamouda*, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

[4]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[5]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[6]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[7]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[8]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[9]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[10]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[11]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[12]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[13]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[14]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[15]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[16]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[17]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[18]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[19]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[20]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]