• Previous Article
    Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay
  • CPAA Home
  • This Issue
  • Next Article
    Sharp threshold for scattering of a generalized Davey-Stewartson system in three dimension
September  2015, 14(5): 1671-1683. doi: 10.3934/cpaa.2015.14.1671

On global solutions in one-dimensional thermoelasticity with second sound in the half line

1. 

Department of Mathematics, China University of Mining and Technology, Beijing, 100083, China

2. 

Department of Mathematics, Tianjin University of Technology, Tianjin 300384, China

Received  December 2013 Revised  March 2014 Published  June 2015

In this paper, we investigate the initial boundary value problem for one-dimensional thermoelasticity with second sound in the half line. By using delicate energy estimates, together with a special form of Helmholtz free energy, we are able to show the global solutions exist under the Dirichlet boundary condition if the initial data are sufficient small.
Citation: Yuxi Hu, Na Wang. On global solutions in one-dimensional thermoelasticity with second sound in the half line. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1671-1683. doi: 10.3934/cpaa.2015.14.1671
References:
[1]

K. Beauchard and E. Zuazua, Large time asymptotics for partially dissipative hyperbolic systems, Arch. Ration. Mech. Anal., 199 (2011), 177-227. doi: 10.1007/s00205-010-0321-y.

[2]

C. Benzoni-Gavage and D. Serre, Multi-dimensional Hyperbolic Partial Differential Equations-First-order Systems and Application, Clarendon Press, Oxford, 2007.

[3]

S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Comm. Pure Appl. Math., 60 (2007), 1559-1622. doi: 10.1002/cpa.20195.

[4]

C. M. Dafermos and L. Hsiao, Development of singularities in solutions of the equations of nonlinear thermoelasticity, Quart. Appl. Math., 44 (1986), 463-474.

[5]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems-Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., 194 (2009), 221-251. doi: 10.1007/s00205-009-0220-2.

[6]

I. Hansen, Lebensdauer von klassischen Lösungen nichtlinearer Thermoelastizitätsgleichungen, Diploma thesis, University of Bonn, 1994.

[7]

Y. Hu, Global solvability in thermoelasticity with second sound on the semi-axis, J. Part. Diff. Eq., 25 (2012), 37-68.

[8]

Y. Hu and R. Racke, Formation of singularities in one-dimensional thermoelasticity with second sound, Quart. Appl. Math., 72 (2014) 311-321. doi: 10.1090/S0033-569X-2014-01336-2.

[9]

T. J. R. Hughes, T. Kato and J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relaticity, Arch. Rational Mech. Anal., 63 (1977), 273-294.

[10]

W. J. Hrusa and S. A. Messaoudi, On formation of singularities in one-dimensional nonlinear thermoelasticity, Arch. Ration. Mech. Anal., 111 (1990), 135-151. doi: 10.1007/BF00375405.

[11]

W. J. Hrusa and M. A. Tarabek, On smooth solutions of the Cauchy problem in one-dimensional nonlinear thermoelasticity, Quart. Appl. Math., 47 (1989), 631-644.

[12]

S. Jiang, Global existence and asymptotic behavior of smooth solutions in one-dimensional nonlinear thermoelasticity, Proc. Roy. Soc. Edinburgh, 115A (1990), 257-274. doi: 10.1017/S0308210500020631.

[13]

S. Jiang, Global solutions of the Dirichlet problem in one-dimensional nonlinear thermoelasticity, SFB, Univ. Bonn, 138, 1990.

[14]

S. Jiang, On global smooth solutions to the one-dimensional equations of nonlnear inhomogeneous thermoelasticity, Nonlinear Anal., TMA, 20 (1993), 1245-1256. doi: 10.1016/0362-546X(93)90154-K.

[15]

S. Jiang and R. Racke, Evolution Equations in Thermoelasticity, Chapman and Hall/CRC Monographs and Surveys in Pure and Appl. Math. Vol. 112, 2000.

[16]

A. Kasimov, R. Racke and B. Said-Houari, Global existence and decay properties for solutions of the Cauchy problem in one-dimensional thermoelasticity with second sound, Applicable Analysis, 93 (2014), 911-935. doi: 10.1080/00036811.2013.801457.

[17]

T.-T, Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, Masson, Paris, 1994.

[18]

S. A. Messaoudi and B. Said-Houari, Exponetial stability in one-dimensional non-linear thermoelasticity with second sound, Math. Methods Appl. Sci., 28 (2005) 205-232. doi: 10.1002/mma.556.

[19]

R. Racke and Y. Shibata, Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity, Arch. Rational Mech. Anal., 116 (1991), 1-34. doi: 10.1007/BF00375601.

[20]

R. Racke and Y. Shibada, Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity, Quart. Appl. Math., 51 (1993), 751-763.

[21]

R. Racke, Thermoelasticity with second sound--Exponential stability in linear and non-linear 1-d, Math. Meth. Appl. Sci., 25 (2002), 409-441. doi: 10.1002/mma.298.

[22]

R. Racke, Thermoelasticity, Handbook of Differential Equations, Chapter 4, (C. M. Dafermos and M. Pokornýeds.), Elsevier (2009), 315-386. doi: 10.1016/S1874-5717(08)00211-9.

[23]

R. Racke and Y. G. Wang, Nonlinear well-posedness and rates of decay in thermoelasticity with second sound, J. Hyperbolic Differential Equations, 5 (2008), 25-43. doi: 10.1142/S021989160800143X.

[24]

J. E. M. Rivera, Energy decay rates in linear thermoelasticity, Funkcial. Ekvac., 35 (1992), 19-30.

[25]

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1995), 249-275. doi: 10.14492/hokmj/1381757663.

[26]

M. A. Tarabek, On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound, Quart. Appl. Math., 50 (1992), 727-742.

show all references

References:
[1]

K. Beauchard and E. Zuazua, Large time asymptotics for partially dissipative hyperbolic systems, Arch. Ration. Mech. Anal., 199 (2011), 177-227. doi: 10.1007/s00205-010-0321-y.

[2]

C. Benzoni-Gavage and D. Serre, Multi-dimensional Hyperbolic Partial Differential Equations-First-order Systems and Application, Clarendon Press, Oxford, 2007.

[3]

S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Comm. Pure Appl. Math., 60 (2007), 1559-1622. doi: 10.1002/cpa.20195.

[4]

C. M. Dafermos and L. Hsiao, Development of singularities in solutions of the equations of nonlinear thermoelasticity, Quart. Appl. Math., 44 (1986), 463-474.

[5]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems-Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., 194 (2009), 221-251. doi: 10.1007/s00205-009-0220-2.

[6]

I. Hansen, Lebensdauer von klassischen Lösungen nichtlinearer Thermoelastizitätsgleichungen, Diploma thesis, University of Bonn, 1994.

[7]

Y. Hu, Global solvability in thermoelasticity with second sound on the semi-axis, J. Part. Diff. Eq., 25 (2012), 37-68.

[8]

Y. Hu and R. Racke, Formation of singularities in one-dimensional thermoelasticity with second sound, Quart. Appl. Math., 72 (2014) 311-321. doi: 10.1090/S0033-569X-2014-01336-2.

[9]

T. J. R. Hughes, T. Kato and J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relaticity, Arch. Rational Mech. Anal., 63 (1977), 273-294.

[10]

W. J. Hrusa and S. A. Messaoudi, On formation of singularities in one-dimensional nonlinear thermoelasticity, Arch. Ration. Mech. Anal., 111 (1990), 135-151. doi: 10.1007/BF00375405.

[11]

W. J. Hrusa and M. A. Tarabek, On smooth solutions of the Cauchy problem in one-dimensional nonlinear thermoelasticity, Quart. Appl. Math., 47 (1989), 631-644.

[12]

S. Jiang, Global existence and asymptotic behavior of smooth solutions in one-dimensional nonlinear thermoelasticity, Proc. Roy. Soc. Edinburgh, 115A (1990), 257-274. doi: 10.1017/S0308210500020631.

[13]

S. Jiang, Global solutions of the Dirichlet problem in one-dimensional nonlinear thermoelasticity, SFB, Univ. Bonn, 138, 1990.

[14]

S. Jiang, On global smooth solutions to the one-dimensional equations of nonlnear inhomogeneous thermoelasticity, Nonlinear Anal., TMA, 20 (1993), 1245-1256. doi: 10.1016/0362-546X(93)90154-K.

[15]

S. Jiang and R. Racke, Evolution Equations in Thermoelasticity, Chapman and Hall/CRC Monographs and Surveys in Pure and Appl. Math. Vol. 112, 2000.

[16]

A. Kasimov, R. Racke and B. Said-Houari, Global existence and decay properties for solutions of the Cauchy problem in one-dimensional thermoelasticity with second sound, Applicable Analysis, 93 (2014), 911-935. doi: 10.1080/00036811.2013.801457.

[17]

T.-T, Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, Masson, Paris, 1994.

[18]

S. A. Messaoudi and B. Said-Houari, Exponetial stability in one-dimensional non-linear thermoelasticity with second sound, Math. Methods Appl. Sci., 28 (2005) 205-232. doi: 10.1002/mma.556.

[19]

R. Racke and Y. Shibata, Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity, Arch. Rational Mech. Anal., 116 (1991), 1-34. doi: 10.1007/BF00375601.

[20]

R. Racke and Y. Shibada, Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity, Quart. Appl. Math., 51 (1993), 751-763.

[21]

R. Racke, Thermoelasticity with second sound--Exponential stability in linear and non-linear 1-d, Math. Meth. Appl. Sci., 25 (2002), 409-441. doi: 10.1002/mma.298.

[22]

R. Racke, Thermoelasticity, Handbook of Differential Equations, Chapter 4, (C. M. Dafermos and M. Pokornýeds.), Elsevier (2009), 315-386. doi: 10.1016/S1874-5717(08)00211-9.

[23]

R. Racke and Y. G. Wang, Nonlinear well-posedness and rates of decay in thermoelasticity with second sound, J. Hyperbolic Differential Equations, 5 (2008), 25-43. doi: 10.1142/S021989160800143X.

[24]

J. E. M. Rivera, Energy decay rates in linear thermoelasticity, Funkcial. Ekvac., 35 (1992), 19-30.

[25]

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1995), 249-275. doi: 10.14492/hokmj/1381757663.

[26]

M. A. Tarabek, On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound, Quart. Appl. Math., 50 (1992), 727-742.

[1]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 79-93. doi: 10.3934/dcdss.2021030

[2]

Virginie Bonnaillie-Noël. Harmonic oscillators with Neumann condition on the half-line. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2221-2237. doi: 10.3934/cpaa.2012.11.2221

[3]

Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control and Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31

[4]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[5]

Shitao Liu. Recovery of the sound speed and initial displacement for the wave equation by means of a single Dirichlet boundary measurement. Evolution Equations and Control Theory, 2013, 2 (2) : 355-364. doi: 10.3934/eect.2013.2.355

[6]

Nicola Abatangelo, Serena Dipierro, Mouhamed Moustapha Fall, Sven Jarohs, Alberto Saldaña. Positive powers of the Laplacian in the half-space under Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1205-1235. doi: 10.3934/dcds.2019052

[7]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[8]

Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095

[9]

Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070

[10]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[11]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[12]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[13]

Lena-Susanne Hartmann, Ilya Pavlyukevich. Advection-diffusion equation on a half-line with boundary Lévy noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 637-655. doi: 10.3934/dcdsb.2018200

[14]

Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061

[15]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic and Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[16]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure and Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[17]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control and Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[18]

Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068

[19]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[20]

Ivan C. Christov. On a C-integrable equation for second sound propagation in heated dielectrics. Evolution Equations and Control Theory, 2019, 8 (1) : 57-72. doi: 10.3934/eect.2019004

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (150)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]