September  2015, 14(5): 1685-1704. doi: 10.3934/cpaa.2015.14.1685

Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay

1. 

Department of Mechanics and Mathematics, Karazin Kharkov National University, Kharkov, 61022

2. 

Department of Mechanics and Mathematics, V.N.Karazin Kharkiv National University, 4, Svobody Sqr., Kharkiv, 61077

Received  October 2014 Revised  February 2015 Published  June 2015

We deal with a class of parabolic nonlinear evolution equations with state-dependent delay. This class covers several important PDE models arising in biology. We first prove well-posedness in a certain space of functions which are Lipschitz in time. This allows us to show that the model considered generates an evolution operator semigroup $S_t$ on a certain space of Lipschitz type functions over delay time interval. The operators $S_t$ are closed for all $t\ge 0$ and continuous for $t$ large enough. Our main result shows that the semigroup $S_t$ possesses compact global and exponential attractors of finite fractal dimension. Our argument is based on the recently developed method of quasi-stability estimates and involves some extension of the theory of global attractors for the case of closed evolutions.
Citation: Igor Chueshov, Alexander V. Rezounenko. Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1685-1704. doi: 10.3934/cpaa.2015.14.1685
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations,, Amsterdam, (1992). Google Scholar

[2]

R. Bellman and K. L. Cooke, Differential-difference Equations, in "Mathematics in Science and Engineering''. Vol. 6., New York-London: Academic Press, (1963). Google Scholar

[3]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, \emph{SIAM. J. Appl. Math.}, 50 (1990), 1663. doi: 10.1137/0150099. Google Scholar

[4]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,, Acta, (1999). Google Scholar

[5]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems,, Springer, (2015). Google Scholar

[6]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping,, \emph{J. of Dyn. and Diff. Equations}, 16 (2004), 469. doi: 10.1007/s10884-004-4289-x. Google Scholar

[7]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping,, Mem. Amer. Math. Soc. 195 (2008), (2008). Google Scholar

[8]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long-time Dynamics,, Springer Monographs in Mathematics. Springer, (2010). Google Scholar

[9]

I. Chueshov and I. Lasiecka, Well-posedness and long time behavior in nonlinear dissipative hyperbolic-like evolutions with critical exponents,, in \emph{Nonlinear Hyperbolic PDEs, (2013), 1. Google Scholar

[10]

I. Chueshov, I. Lasiecka and J. T. Webster, Attractors for delayed, non-rotational von Karman plates with applications to flow-structure interactions without any damping,, \emph{Communications in Partial Differential Equations}, 39 (2014), 1965. doi: 10.1080/03605302.2014.930484. Google Scholar

[11]

I. Chueshov, I. Lasiecka and J. T. Webster, Flow-plate interactions: well-posedness and long-time behavior,, \emph{Discrete Continuous Dynamical Systems Ser. S}, 7 (2014), 925. doi: 10.3934/dcdss.2014.7.925. Google Scholar

[12]

I. Chueshov and A. Rezounenko, Dynamics of second order in time evolution equations with state-dependent delay,, \emph{Nonlinear Analysis: Theory, 123–-124 (2015), 126. doi: 10.1016/j.na.2015.04.013. Google Scholar

[13]

O. Diekmann, S. van Gils, S. Verduyn Lunel and H-O. Walther, Delay Equations: Functional, Complex, and Nonlinear Analysis,, Springer-Verlag, (1995). Google Scholar

[14]

R. D. Driver, A two-body problem of classical electrodynamics: the one-dimensional case,, \emph{Ann. Physics}, 21 (1963), 122. doi: 10.1016/0003-4916(63)90227-6. Google Scholar

[15]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations,, Research in Appl. Math. 37, (1994). Google Scholar

[16]

W. E. Fitzgibbon, Semilinear functional differential equations in Banach space,, \emph{J. Differential Equations}, 29 (1978), 1. Google Scholar

[17]

S. Gourley, J. So and J. Wu, Non-locality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics,, in \emph{Contemporary Mathematics, 124 (2004), 84. doi: 10.1023/B:JOTH.0000047249.39572.6d. Google Scholar

[18]

J. K. Hale, Theory of Functional Differential Equations,, Springer, (1977). Google Scholar

[19]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Amer. Math. Soc., (1988). Google Scholar

[20]

F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional differential equations with state-dependent delays: Theory and applications,, In \emph{Handbook of Differential Equations, (2006), 435. Google Scholar

[21]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, New York, (1981). Google Scholar

[22]

T. Krisztin and O. Arino, The 2-dimensional attractor of a differential equation with state-dependent delay,, \emph{J. Dynamics and Differential Equations}, 13 (2001), 453. doi: 10.1023/A:1016635223074. Google Scholar

[23]

O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Cambridge University Press, (1991). Google Scholar

[24]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,, Dunod, (1969). Google Scholar

[25]

J. L. Lions and E. Magenes, Problèmes aux Limites Non Homogénes et Applications,, Dunon, (1968). Google Scholar

[26]

J. Mallet-Paret, R. D. Nussbaum and P. Paraskevopoulos, Periodic solutions for functional-differential equations with multiple state-dependent time lags,, \emph{Topol. Methods Nonlinear Anal.}, 3 (1994), 101. Google Scholar

[27]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, In \emph{Handbook of Differential Equations: Evolutionary Equations} (C. M. Dafermos and M. Pokorny eds.), (2008), 103. Google Scholar

[28]

V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators,, \emph{Commun. Pure. Appl. Anal.}, 6 (2007), 481. doi: 10.3934/cpaa.2007.6.481. Google Scholar

[29]

A. V. Rezounenko, Partial differential equations with discrete and distributed state-dependent delays,, \emph{Journal of Mathematical Analysis and Applications}, 326 (2007), 1031. Google Scholar

[30]

A. V. Rezounenko, Differential equations with discrete state-dependent delay: uniqueness and well-posedness in the space of continuous functions,, \emph{Nonlinear Analysis: Theory, 70 (2009), 3978. doi: 10.1016/j.na.2008.08.006. Google Scholar

[31]

A. V. Rezounenko, Non-linear partial differential equations with discrete state-dependent delays in a metric space,, \emph{Nonlinear Analysis: Theory, 73 (2010), 1707. doi: 10.1016/j.na.2010.05.005. Google Scholar

[32]

A. V. Rezounenko, A condition on delay for differential equations with discrete state-dependent delay,, \emph{Journal of Mathematical Analysis and Applications}, 385 (2012), 506. doi: 10.1016/j.jmaa.2011.06.070. Google Scholar

[33]

A. V. Rezounenko and P. Zagalak, Non-local PDEs with discrete state-dependent delays: well-posedness in a metric space,, \emph{Discrete and Continuous Dynamical Systems - Series A}, 33 (2013), 819. doi: 10.3934/dcds.2013.33.819. Google Scholar

[34]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, \emph{Annali di Mat. Pura ed Appl.}, 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[35]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,, AMS, (1997). Google Scholar

[36]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer, (1988). Google Scholar

[37]

C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations,, \emph{Transactions of AMS}, 200 (1974), 395. Google Scholar

[38]

H.-O. Walther, The solution manifold and $C^1$-smoothness for differential equations with state-dependent delay,, \emph{Journal of Differential Equations}, 195 (2003), 46. doi: 10.1016/j.jde.2003.07.001. Google Scholar

[39]

J. Wu, Theory and Applications of Partial Functional Differential Equations,, Springer-Verlag, (1996). Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations,, Amsterdam, (1992). Google Scholar

[2]

R. Bellman and K. L. Cooke, Differential-difference Equations, in "Mathematics in Science and Engineering''. Vol. 6., New York-London: Academic Press, (1963). Google Scholar

[3]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, \emph{SIAM. J. Appl. Math.}, 50 (1990), 1663. doi: 10.1137/0150099. Google Scholar

[4]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,, Acta, (1999). Google Scholar

[5]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems,, Springer, (2015). Google Scholar

[6]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping,, \emph{J. of Dyn. and Diff. Equations}, 16 (2004), 469. doi: 10.1007/s10884-004-4289-x. Google Scholar

[7]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping,, Mem. Amer. Math. Soc. 195 (2008), (2008). Google Scholar

[8]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long-time Dynamics,, Springer Monographs in Mathematics. Springer, (2010). Google Scholar

[9]

I. Chueshov and I. Lasiecka, Well-posedness and long time behavior in nonlinear dissipative hyperbolic-like evolutions with critical exponents,, in \emph{Nonlinear Hyperbolic PDEs, (2013), 1. Google Scholar

[10]

I. Chueshov, I. Lasiecka and J. T. Webster, Attractors for delayed, non-rotational von Karman plates with applications to flow-structure interactions without any damping,, \emph{Communications in Partial Differential Equations}, 39 (2014), 1965. doi: 10.1080/03605302.2014.930484. Google Scholar

[11]

I. Chueshov, I. Lasiecka and J. T. Webster, Flow-plate interactions: well-posedness and long-time behavior,, \emph{Discrete Continuous Dynamical Systems Ser. S}, 7 (2014), 925. doi: 10.3934/dcdss.2014.7.925. Google Scholar

[12]

I. Chueshov and A. Rezounenko, Dynamics of second order in time evolution equations with state-dependent delay,, \emph{Nonlinear Analysis: Theory, 123–-124 (2015), 126. doi: 10.1016/j.na.2015.04.013. Google Scholar

[13]

O. Diekmann, S. van Gils, S. Verduyn Lunel and H-O. Walther, Delay Equations: Functional, Complex, and Nonlinear Analysis,, Springer-Verlag, (1995). Google Scholar

[14]

R. D. Driver, A two-body problem of classical electrodynamics: the one-dimensional case,, \emph{Ann. Physics}, 21 (1963), 122. doi: 10.1016/0003-4916(63)90227-6. Google Scholar

[15]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations,, Research in Appl. Math. 37, (1994). Google Scholar

[16]

W. E. Fitzgibbon, Semilinear functional differential equations in Banach space,, \emph{J. Differential Equations}, 29 (1978), 1. Google Scholar

[17]

S. Gourley, J. So and J. Wu, Non-locality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics,, in \emph{Contemporary Mathematics, 124 (2004), 84. doi: 10.1023/B:JOTH.0000047249.39572.6d. Google Scholar

[18]

J. K. Hale, Theory of Functional Differential Equations,, Springer, (1977). Google Scholar

[19]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Amer. Math. Soc., (1988). Google Scholar

[20]

F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional differential equations with state-dependent delays: Theory and applications,, In \emph{Handbook of Differential Equations, (2006), 435. Google Scholar

[21]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, New York, (1981). Google Scholar

[22]

T. Krisztin and O. Arino, The 2-dimensional attractor of a differential equation with state-dependent delay,, \emph{J. Dynamics and Differential Equations}, 13 (2001), 453. doi: 10.1023/A:1016635223074. Google Scholar

[23]

O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Cambridge University Press, (1991). Google Scholar

[24]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,, Dunod, (1969). Google Scholar

[25]

J. L. Lions and E. Magenes, Problèmes aux Limites Non Homogénes et Applications,, Dunon, (1968). Google Scholar

[26]

J. Mallet-Paret, R. D. Nussbaum and P. Paraskevopoulos, Periodic solutions for functional-differential equations with multiple state-dependent time lags,, \emph{Topol. Methods Nonlinear Anal.}, 3 (1994), 101. Google Scholar

[27]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, In \emph{Handbook of Differential Equations: Evolutionary Equations} (C. M. Dafermos and M. Pokorny eds.), (2008), 103. Google Scholar

[28]

V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators,, \emph{Commun. Pure. Appl. Anal.}, 6 (2007), 481. doi: 10.3934/cpaa.2007.6.481. Google Scholar

[29]

A. V. Rezounenko, Partial differential equations with discrete and distributed state-dependent delays,, \emph{Journal of Mathematical Analysis and Applications}, 326 (2007), 1031. Google Scholar

[30]

A. V. Rezounenko, Differential equations with discrete state-dependent delay: uniqueness and well-posedness in the space of continuous functions,, \emph{Nonlinear Analysis: Theory, 70 (2009), 3978. doi: 10.1016/j.na.2008.08.006. Google Scholar

[31]

A. V. Rezounenko, Non-linear partial differential equations with discrete state-dependent delays in a metric space,, \emph{Nonlinear Analysis: Theory, 73 (2010), 1707. doi: 10.1016/j.na.2010.05.005. Google Scholar

[32]

A. V. Rezounenko, A condition on delay for differential equations with discrete state-dependent delay,, \emph{Journal of Mathematical Analysis and Applications}, 385 (2012), 506. doi: 10.1016/j.jmaa.2011.06.070. Google Scholar

[33]

A. V. Rezounenko and P. Zagalak, Non-local PDEs with discrete state-dependent delays: well-posedness in a metric space,, \emph{Discrete and Continuous Dynamical Systems - Series A}, 33 (2013), 819. doi: 10.3934/dcds.2013.33.819. Google Scholar

[34]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, \emph{Annali di Mat. Pura ed Appl.}, 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[35]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,, AMS, (1997). Google Scholar

[36]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer, (1988). Google Scholar

[37]

C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations,, \emph{Transactions of AMS}, 200 (1974), 395. Google Scholar

[38]

H.-O. Walther, The solution manifold and $C^1$-smoothness for differential equations with state-dependent delay,, \emph{Journal of Differential Equations}, 195 (2003), 46. doi: 10.1016/j.jde.2003.07.001. Google Scholar

[39]

J. Wu, Theory and Applications of Partial Functional Differential Equations,, Springer-Verlag, (1996). Google Scholar

[1]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[2]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[3]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 991-1009. doi: 10.3934/dcdsb.2018139

[4]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[5]

Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

[6]

Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1

[7]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[8]

Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801

[9]

Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993

[10]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[11]

Odo Diekmann, Karolína Korvasová. Linearization of solution operators for state-dependent delay equations: A simple example. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 137-149. doi: 10.3934/dcds.2016.36.137

[12]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[13]

Hermann Brunner, Stefano Maset. Time transformations for state-dependent delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (1) : 23-45. doi: 10.3934/cpaa.2010.9.23

[14]

Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801

[15]

M. Bulíček, Josef Málek, Dalibor Pražák. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Communications on Pure & Applied Analysis, 2005, 4 (4) : 805-822. doi: 10.3934/cpaa.2005.4.805

[16]

Xianlong Fu. Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. Evolution Equations & Control Theory, 2017, 6 (4) : 517-534. doi: 10.3934/eect.2017026

[17]

Ning Ju. The finite dimensional global attractor for the 3D viscous Primitive Equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7001-7020. doi: 10.3934/dcds.2016104

[18]

Hans-Otto Walther. On Poisson's state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 365-379. doi: 10.3934/dcds.2013.33.365

[19]

Xiang Li, Zhixiang Li. Kernel sections and (almost) periodic solutions of a non-autonomous parabolic PDE with a discrete state-dependent delay. Communications on Pure & Applied Analysis, 2011, 10 (2) : 687-700. doi: 10.3934/cpaa.2011.10.687

[20]

Jan Sieber. Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2607-2651. doi: 10.3934/dcds.2012.32.2607

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]