• Previous Article
    Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain
  • CPAA Home
  • This Issue
  • Next Article
    On the uniqueness of nonnegative solutions of differential inequalities with gradient terms on Riemannian manifolds
September  2015, 14(5): 1759-1780. doi: 10.3934/cpaa.2015.14.1759

Asymptotic profiles for a strongly damped plate equation with lower order perturbation

1. 

Department of Mathematics, Graduate School of Education, Hiroshima University, Higashi-Hiroshima 739-8524, Japan, Japan

Received  August 2014 Revised  April 2015 Published  June 2015

We consider the Cauchy problem in $ R^n$ for a strongly damped plate equation with a lower oder perturbation. We derive asymptotic profiles of solutions with weighted $L^{1,\gamma}(R^n)$ initial velocity by using a new method introduced in [7].
Citation: Ryo Ikehata, Marina Soga. Asymptotic profiles for a strongly damped plate equation with lower order perturbation. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1759-1780. doi: 10.3934/cpaa.2015.14.1759
References:
[1]

R. C. Charão, C. R. daLuz and R. Ikehata, New decay rates for a problem of plate dynamics with fractional damping,, \emph{J. Hyperbolic Diff. Eqns}, 10 (2013), 1.  doi: 10.1142/S0219891613500203.  Google Scholar

[2]

M. D'Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^p$-$L^q$ framework,, \emph{J. Diff. Eqns}, 256 (2014), 2307.  doi: 10.1016/j.jde.2014.01.002.  Google Scholar

[3]

M. D'Abbicco and M. Reissig, Semi-linear structural damped waves,, \emph{Math. Meth. Appl. Sci.}, 32 (2014), 1570.   Google Scholar

[4]

L. C. Evans, Partial Differential Equations,, Berkeley Mathematics Lecture Noes Vol. 3a, (1994).   Google Scholar

[5]

D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow,, \emph{Indiana Univ. Math. J.}, 44 (1995), 603.  doi: 10.1512/iumj.1995.44.2003.  Google Scholar

[6]

R. Ikehata, New decay estimates for linear damped wave equations and its application to nonlinear problem,, \emph{Math. Meth. Appl. Sci.}, 27 (2004), 865.  doi: 10.1002/mma.476.  Google Scholar

[7]

R. Ikehata, Asymptotic profiles for wave equations with strong damping,, \emph{J. Diff. Eqns}, 257 (2014), 2159.  doi: 10.1016/j.jde.2014.05.031.  Google Scholar

[8]

R. Ikehata and M. Natsume, Energy decay estimates for wave equations with a fractional damping,, \emph{Diff. Int. Eqns}, 25 (2012), 939.   Google Scholar

[9]

R. Ikehata, G. Todorova and B. Yordanov, Wave equations with strong damping in Hilbert spaces,, \emph{J. Diff. Eqns}, 254 (2013), 3352.  doi: 10.1016/j.jde.2013.01.023.  Google Scholar

[10]

G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations,, \emph{Studia Math.}, 143 (2000), 175.   Google Scholar

[11]

X. Lu and M. Reissig, Rates of decay for structural damped models with decreasing in time coefficients,, \emph{Int. J. Dyn. Syst. Differ. Equ.}, 2 (2009), 21.  doi: 10.1504/IJDSDE.2009.028034.  Google Scholar

[12]

C. R. daLuz, R. Ikehata and R. C. Charão, Asymptotic behavior for abstract evolution differential equations of second order,, \emph{J. Diff. Eqns}, ().   Google Scholar

[13]

S. Mizohata, The Theory of Partial Differential Equations,, Cambridge University Press, (1973).   Google Scholar

[14]

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations,, \emph{Nonlinear Anal.}, 9 (1985), 399.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[15]

Y. Shibata, On the rate of decay of solutions to linear viscoelastic equation,, \emph{Math. Meth. Appl. Sci.}, 23 (2000), 203.  doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M.  Google Scholar

[16]

M. A. J. Silva and T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of $p$-Laplacian type,, \emph{IMA J. Appl. Math.}, 78 (2013), 1130.  doi: 10.1093/imamat/hxs011.  Google Scholar

[17]

H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping II,, \emph{Asymptotic profiles, 253 (2012), 3061.  doi: 10.1016/j.jde.2012.07.014.  Google Scholar

[18]

T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics,, \emph{Japan J. Appl. Math.}, 1 (1984), 435.  doi: 10.1007/BF03167068.  Google Scholar

show all references

References:
[1]

R. C. Charão, C. R. daLuz and R. Ikehata, New decay rates for a problem of plate dynamics with fractional damping,, \emph{J. Hyperbolic Diff. Eqns}, 10 (2013), 1.  doi: 10.1142/S0219891613500203.  Google Scholar

[2]

M. D'Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^p$-$L^q$ framework,, \emph{J. Diff. Eqns}, 256 (2014), 2307.  doi: 10.1016/j.jde.2014.01.002.  Google Scholar

[3]

M. D'Abbicco and M. Reissig, Semi-linear structural damped waves,, \emph{Math. Meth. Appl. Sci.}, 32 (2014), 1570.   Google Scholar

[4]

L. C. Evans, Partial Differential Equations,, Berkeley Mathematics Lecture Noes Vol. 3a, (1994).   Google Scholar

[5]

D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow,, \emph{Indiana Univ. Math. J.}, 44 (1995), 603.  doi: 10.1512/iumj.1995.44.2003.  Google Scholar

[6]

R. Ikehata, New decay estimates for linear damped wave equations and its application to nonlinear problem,, \emph{Math. Meth. Appl. Sci.}, 27 (2004), 865.  doi: 10.1002/mma.476.  Google Scholar

[7]

R. Ikehata, Asymptotic profiles for wave equations with strong damping,, \emph{J. Diff. Eqns}, 257 (2014), 2159.  doi: 10.1016/j.jde.2014.05.031.  Google Scholar

[8]

R. Ikehata and M. Natsume, Energy decay estimates for wave equations with a fractional damping,, \emph{Diff. Int. Eqns}, 25 (2012), 939.   Google Scholar

[9]

R. Ikehata, G. Todorova and B. Yordanov, Wave equations with strong damping in Hilbert spaces,, \emph{J. Diff. Eqns}, 254 (2013), 3352.  doi: 10.1016/j.jde.2013.01.023.  Google Scholar

[10]

G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations,, \emph{Studia Math.}, 143 (2000), 175.   Google Scholar

[11]

X. Lu and M. Reissig, Rates of decay for structural damped models with decreasing in time coefficients,, \emph{Int. J. Dyn. Syst. Differ. Equ.}, 2 (2009), 21.  doi: 10.1504/IJDSDE.2009.028034.  Google Scholar

[12]

C. R. daLuz, R. Ikehata and R. C. Charão, Asymptotic behavior for abstract evolution differential equations of second order,, \emph{J. Diff. Eqns}, ().   Google Scholar

[13]

S. Mizohata, The Theory of Partial Differential Equations,, Cambridge University Press, (1973).   Google Scholar

[14]

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations,, \emph{Nonlinear Anal.}, 9 (1985), 399.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[15]

Y. Shibata, On the rate of decay of solutions to linear viscoelastic equation,, \emph{Math. Meth. Appl. Sci.}, 23 (2000), 203.  doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M.  Google Scholar

[16]

M. A. J. Silva and T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of $p$-Laplacian type,, \emph{IMA J. Appl. Math.}, 78 (2013), 1130.  doi: 10.1093/imamat/hxs011.  Google Scholar

[17]

H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping II,, \emph{Asymptotic profiles, 253 (2012), 3061.  doi: 10.1016/j.jde.2012.07.014.  Google Scholar

[18]

T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics,, \emph{Japan J. Appl. Math.}, 1 (1984), 435.  doi: 10.1007/BF03167068.  Google Scholar

[1]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[3]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[6]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[7]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[8]

Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007

[9]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[10]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021002

[11]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[12]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[13]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[14]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[15]

Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123

[16]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[17]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021003

[18]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[19]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[20]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]