Advanced Search
Article Contents
Article Contents

Asymptotic profiles for a strongly damped plate equation with lower order perturbation

Abstract Related Papers Cited by
  • We consider the Cauchy problem in $ R^n$ for a strongly damped plate equation with a lower oder perturbation. We derive asymptotic profiles of solutions with weighted $L^{1,\gamma}(R^n)$ initial velocity by using a new method introduced in [7].
    Mathematics Subject Classification: Primary: 35B40, 35L30; Secondary: 35B05, 35B20.


    \begin{equation} \\ \end{equation}
  • [1]

    R. C. Charão, C. R. daLuz and R. Ikehata, New decay rates for a problem of plate dynamics with fractional damping, J. Hyperbolic Diff. Eqns, 10 (2013), 1-13.doi: 10.1142/S0219891613500203.


    M. D'Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^p$-$L^q$ framework, J. Diff. Eqns, 256 (2014), 2307-2336.doi: 10.1016/j.jde.2014.01.002.


    M. D'Abbicco and M. Reissig, Semi-linear structural damped waves, Math. Meth. Appl. Sci., 32 (2014), 1570-1592.


    L. C. Evans, Partial Differential Equations, Berkeley Mathematics Lecture Noes Vol. 3a, 1994.


    D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), 603-676.doi: 10.1512/iumj.1995.44.2003.


    R. Ikehata, New decay estimates for linear damped wave equations and its application to nonlinear problem, Math. Meth. Appl. Sci., 27 (2004), 865-889.doi: 10.1002/mma.476.


    R. Ikehata, Asymptotic profiles for wave equations with strong damping, J. Diff. Eqns, 257 (2014), 2159-2177.doi: 10.1016/j.jde.2014.05.031.


    R. Ikehata and M. Natsume, Energy decay estimates for wave equations with a fractional damping, Diff. Int. Eqns, 25 (2012), 939-956.


    R. Ikehata, G. Todorova and B. Yordanov, Wave equations with strong damping in Hilbert spaces, J. Diff. Eqns, 254 (2013), 3352-3368.doi: 10.1016/j.jde.2013.01.023.


    G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations, Studia Math., 143 (2000), 175-197.


    X. Lu and M. Reissig, Rates of decay for structural damped models with decreasing in time coefficients, Int. J. Dyn. Syst. Differ. Equ., 2 (2009), 21-55.doi: 10.1504/IJDSDE.2009.028034.


    C. R. daLuz, R. Ikehata and R. C. Charão, Asymptotic behavior for abstract evolution differential equations of second order, J. Diff. Eqns, in press.


    S. Mizohata, The Theory of Partial Differential Equations, Cambridge University Press, Cambridge, 1973.


    G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 399-418.doi: 10.1016/0362-546X(85)90001-X.


    Y. Shibata, On the rate of decay of solutions to linear viscoelastic equation, Math. Meth. Appl. Sci., 23 (2000), 203-226.doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M.


    M. A. J. Silva and T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of $p$-Laplacian type, IMA J. Appl. Math., 78 (2013), 1130-1146.doi: 10.1093/imamat/hxs011.


    H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping II, Asymptotic profiles, J. Diff. Eqns, 253 (2012), 3061-3080.doi: 10.1016/j.jde.2012.07.014.


    T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.doi: 10.1007/BF03167068.

  • 加载中

Article Metrics

HTML views() PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint