• Previous Article
    Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain
  • CPAA Home
  • This Issue
  • Next Article
    On the uniqueness of nonnegative solutions of differential inequalities with gradient terms on Riemannian manifolds
September  2015, 14(5): 1759-1780. doi: 10.3934/cpaa.2015.14.1759

Asymptotic profiles for a strongly damped plate equation with lower order perturbation

1. 

Department of Mathematics, Graduate School of Education, Hiroshima University, Higashi-Hiroshima 739-8524, Japan, Japan

Received  August 2014 Revised  April 2015 Published  June 2015

We consider the Cauchy problem in $ R^n$ for a strongly damped plate equation with a lower oder perturbation. We derive asymptotic profiles of solutions with weighted $L^{1,\gamma}(R^n)$ initial velocity by using a new method introduced in [7].
Citation: Ryo Ikehata, Marina Soga. Asymptotic profiles for a strongly damped plate equation with lower order perturbation. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1759-1780. doi: 10.3934/cpaa.2015.14.1759
References:
[1]

R. C. Charão, C. R. daLuz and R. Ikehata, New decay rates for a problem of plate dynamics with fractional damping,, \emph{J. Hyperbolic Diff. Eqns}, 10 (2013), 1.  doi: 10.1142/S0219891613500203.  Google Scholar

[2]

M. D'Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^p$-$L^q$ framework,, \emph{J. Diff. Eqns}, 256 (2014), 2307.  doi: 10.1016/j.jde.2014.01.002.  Google Scholar

[3]

M. D'Abbicco and M. Reissig, Semi-linear structural damped waves,, \emph{Math. Meth. Appl. Sci.}, 32 (2014), 1570.   Google Scholar

[4]

L. C. Evans, Partial Differential Equations,, Berkeley Mathematics Lecture Noes Vol. 3a, (1994).   Google Scholar

[5]

D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow,, \emph{Indiana Univ. Math. J.}, 44 (1995), 603.  doi: 10.1512/iumj.1995.44.2003.  Google Scholar

[6]

R. Ikehata, New decay estimates for linear damped wave equations and its application to nonlinear problem,, \emph{Math. Meth. Appl. Sci.}, 27 (2004), 865.  doi: 10.1002/mma.476.  Google Scholar

[7]

R. Ikehata, Asymptotic profiles for wave equations with strong damping,, \emph{J. Diff. Eqns}, 257 (2014), 2159.  doi: 10.1016/j.jde.2014.05.031.  Google Scholar

[8]

R. Ikehata and M. Natsume, Energy decay estimates for wave equations with a fractional damping,, \emph{Diff. Int. Eqns}, 25 (2012), 939.   Google Scholar

[9]

R. Ikehata, G. Todorova and B. Yordanov, Wave equations with strong damping in Hilbert spaces,, \emph{J. Diff. Eqns}, 254 (2013), 3352.  doi: 10.1016/j.jde.2013.01.023.  Google Scholar

[10]

G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations,, \emph{Studia Math.}, 143 (2000), 175.   Google Scholar

[11]

X. Lu and M. Reissig, Rates of decay for structural damped models with decreasing in time coefficients,, \emph{Int. J. Dyn. Syst. Differ. Equ.}, 2 (2009), 21.  doi: 10.1504/IJDSDE.2009.028034.  Google Scholar

[12]

C. R. daLuz, R. Ikehata and R. C. Charão, Asymptotic behavior for abstract evolution differential equations of second order,, \emph{J. Diff. Eqns}, ().   Google Scholar

[13]

S. Mizohata, The Theory of Partial Differential Equations,, Cambridge University Press, (1973).   Google Scholar

[14]

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations,, \emph{Nonlinear Anal.}, 9 (1985), 399.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[15]

Y. Shibata, On the rate of decay of solutions to linear viscoelastic equation,, \emph{Math. Meth. Appl. Sci.}, 23 (2000), 203.  doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M.  Google Scholar

[16]

M. A. J. Silva and T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of $p$-Laplacian type,, \emph{IMA J. Appl. Math.}, 78 (2013), 1130.  doi: 10.1093/imamat/hxs011.  Google Scholar

[17]

H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping II,, \emph{Asymptotic profiles, 253 (2012), 3061.  doi: 10.1016/j.jde.2012.07.014.  Google Scholar

[18]

T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics,, \emph{Japan J. Appl. Math.}, 1 (1984), 435.  doi: 10.1007/BF03167068.  Google Scholar

show all references

References:
[1]

R. C. Charão, C. R. daLuz and R. Ikehata, New decay rates for a problem of plate dynamics with fractional damping,, \emph{J. Hyperbolic Diff. Eqns}, 10 (2013), 1.  doi: 10.1142/S0219891613500203.  Google Scholar

[2]

M. D'Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^p$-$L^q$ framework,, \emph{J. Diff. Eqns}, 256 (2014), 2307.  doi: 10.1016/j.jde.2014.01.002.  Google Scholar

[3]

M. D'Abbicco and M. Reissig, Semi-linear structural damped waves,, \emph{Math. Meth. Appl. Sci.}, 32 (2014), 1570.   Google Scholar

[4]

L. C. Evans, Partial Differential Equations,, Berkeley Mathematics Lecture Noes Vol. 3a, (1994).   Google Scholar

[5]

D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow,, \emph{Indiana Univ. Math. J.}, 44 (1995), 603.  doi: 10.1512/iumj.1995.44.2003.  Google Scholar

[6]

R. Ikehata, New decay estimates for linear damped wave equations and its application to nonlinear problem,, \emph{Math. Meth. Appl. Sci.}, 27 (2004), 865.  doi: 10.1002/mma.476.  Google Scholar

[7]

R. Ikehata, Asymptotic profiles for wave equations with strong damping,, \emph{J. Diff. Eqns}, 257 (2014), 2159.  doi: 10.1016/j.jde.2014.05.031.  Google Scholar

[8]

R. Ikehata and M. Natsume, Energy decay estimates for wave equations with a fractional damping,, \emph{Diff. Int. Eqns}, 25 (2012), 939.   Google Scholar

[9]

R. Ikehata, G. Todorova and B. Yordanov, Wave equations with strong damping in Hilbert spaces,, \emph{J. Diff. Eqns}, 254 (2013), 3352.  doi: 10.1016/j.jde.2013.01.023.  Google Scholar

[10]

G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations,, \emph{Studia Math.}, 143 (2000), 175.   Google Scholar

[11]

X. Lu and M. Reissig, Rates of decay for structural damped models with decreasing in time coefficients,, \emph{Int. J. Dyn. Syst. Differ. Equ.}, 2 (2009), 21.  doi: 10.1504/IJDSDE.2009.028034.  Google Scholar

[12]

C. R. daLuz, R. Ikehata and R. C. Charão, Asymptotic behavior for abstract evolution differential equations of second order,, \emph{J. Diff. Eqns}, ().   Google Scholar

[13]

S. Mizohata, The Theory of Partial Differential Equations,, Cambridge University Press, (1973).   Google Scholar

[14]

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations,, \emph{Nonlinear Anal.}, 9 (1985), 399.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[15]

Y. Shibata, On the rate of decay of solutions to linear viscoelastic equation,, \emph{Math. Meth. Appl. Sci.}, 23 (2000), 203.  doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M.  Google Scholar

[16]

M. A. J. Silva and T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of $p$-Laplacian type,, \emph{IMA J. Appl. Math.}, 78 (2013), 1130.  doi: 10.1093/imamat/hxs011.  Google Scholar

[17]

H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping II,, \emph{Asymptotic profiles, 253 (2012), 3061.  doi: 10.1016/j.jde.2012.07.014.  Google Scholar

[18]

T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics,, \emph{Japan J. Appl. Math.}, 1 (1984), 435.  doi: 10.1007/BF03167068.  Google Scholar

[1]

Rosaria Di Nardo. Nonlinear parabolic equations with a lower order term and $L^1$ data. Communications on Pure & Applied Analysis, 2010, 9 (4) : 929-942. doi: 10.3934/cpaa.2010.9.929

[2]

Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883

[3]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[4]

Monica Marras, Stella Vernier-Piro. A note on a class of 4th order hyperbolic problems with weak and strong damping and superlinear source term. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020157

[5]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[6]

Igor Chueshov, Stanislav Kolbasin. Long-time dynamics in plate models with strong nonlinear damping. Communications on Pure & Applied Analysis, 2012, 11 (2) : 659-674. doi: 10.3934/cpaa.2012.11.659

[7]

Abdelaziz Rhandi, Roland Schnaubelt. Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 663-683. doi: 10.3934/dcds.1999.5.663

[8]

Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051

[9]

Alain Haraux, Mohamed Ali Jendoubi. Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term. Evolution Equations & Control Theory, 2013, 2 (3) : 461-470. doi: 10.3934/eect.2013.2.461

[10]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[11]

Tohru Wakasa, Shoji Yotsutani. Asymptotic profiles of eigenfunctions for some 1-dimensional linearized eigenvalue problems. Communications on Pure & Applied Analysis, 2010, 9 (2) : 539-561. doi: 10.3934/cpaa.2010.9.539

[12]

H. W. Broer, Renato Vitolo. Dynamical systems modeling of low-frequency variability in low-order atmospheric models. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 401-419. doi: 10.3934/dcdsb.2008.10.401

[13]

Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 507-530. doi: 10.3934/dcdss.2012.5.507

[14]

Renhui Wan. Global well-posedness for the 2D Boussinesq equations with a velocity damping term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2709-2730. doi: 10.3934/dcds.2019113

[15]

Mounir Balti, Ramzi May. Asymptotic for the perturbed heavy ball system with vanishing damping term. Evolution Equations & Control Theory, 2017, 6 (2) : 177-186. doi: 10.3934/eect.2017010

[16]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure & Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[17]

Angelo Favini, Alfredo Lorenzi, Hiroki Tanabe, Atsushi Yagi. An $L^p$-approach to singular linear parabolic equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 989-1008. doi: 10.3934/dcds.2008.22.989

[18]

J. Colliander, A. D. Ionescu, C. E. Kenig, Gigliola Staffilani. Weighted low-regularity solutions of the KP-I initial-value problem. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 219-258. doi: 10.3934/dcds.2008.20.219

[19]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

[20]

Zehui Shao, Huiqin Jiang, Aleksander Vesel. L(2, 1)-labeling of the Cartesian and strong product of two directed cycles. Mathematical Foundations of Computing, 2018, 1 (1) : 49-61. doi: 10.3934/mfc.2018003

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]