September  2015, 14(5): 1781-1801. doi: 10.3934/cpaa.2015.14.1781

Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain

1. 

Unité de recherche: Ondelettes et Fractals, Faculté des Sciences de Monastir, Av. de l'environnement, 5000 Monastir

Received  September 2014 Revised  March 2015 Published  June 2015

We study the long-time behavior of the solutions to a nonlinear damped driven Schrödinger type equation with quadratic potential on a strip. We prove that this behavior is described by a regular compact global attractor with finite fractal dimension.
Citation: Brahim Alouini. Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1781-1801. doi: 10.3934/cpaa.2015.14.1781
References:
[1]

B. Alouini, Long-time behavior of a Bose-Einstein equation in a two dimensional thin domain,, \emph{Communications in Pure and Applied Analysis}, 10 (2011), 1629.  doi: 10.3934/cpaa.2011.10.1629.  Google Scholar

[2]

B. Alouini and O. Goubet, Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain,, \emph{Discrete Continuous Dynam. Systems - B}, 19 (2014), 651.  doi: 10.3934/dcdsb.2014.19.651.  Google Scholar

[3]

J. M. Ball, Global attractors for damped semilinear wave equations,, \emph{Discrete Continuous Dynam. Systems - A}, 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator,, \emph{Proc. Indian. Acad. Sci. (Math. Sci.)}, 116 (2006), 337.  doi: 10.1007/BF02829750.  Google Scholar

[5]

C. C. Bradlay, C. A. Sackett and R. G. Hulet, Bose-Einstein condensation of lithium: observation of limited condensate number,, \emph{Phys. Rev. Lett.}, 78 (1997), 985.  doi: 10.1103/PhysRevLett.78.985.  Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext, (2011).   Google Scholar

[7]

R. Carles, Remarks on nonlinear Schrödinger equation with harmonic potential,, \emph{Annales Henri Poincare}, 3 (2002), 757.  doi: 10.1007/s00023-002-8635-4.  Google Scholar

[8]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, 10 (2003).   Google Scholar

[9]

I. D. Chueshov, Introduction to The Theory of Infinite-Dimensional Dissipative Systems,, University Lectures in Contemporary Mathematics, (2002).   Google Scholar

[10]

I. D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations With Nonlinear Damping,, Memoirs of the American Mathematical Society, 195 (2008).   Google Scholar

[11]

G. B. Folland, Fourier Analysis and Its Applications,, The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, (1992).   Google Scholar

[12]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $R^2$,, \emph{Advances in Differential Equations}, 3 (1998), 337.   Google Scholar

[13]

O. Goubet and L. Legry, Finite dimensional global attractor for a parametric nonlinear Schrödinger system with a trapping potential,, \emph{Nonlinear Analysis}, 72 (2010), 4397.  doi: 10.1016/j.na.2010.02.013.  Google Scholar

[14]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anormalous dispersion,, \emph{Applied Physics Lettres}, 23 (1973), 14.  doi: 10.1063/1.1654836.  Google Scholar

[15]

P. Lauren\ccot, Long-time behavior for weakly damped driven nonlinear Schrödinger equations in $R^N,N\leq 3$,, \emph{NoDEA}, 2 (1995), 357.  doi: 10.1007/BF01261181.  Google Scholar

[16]

Q. Liu, Y. Zhou, J. Zhang and W. Zhang, Sharp condition of global existence for nonlinear Schrödinger equation with a harmonic potential,, \emph{Appl. Math. Comput.}, 177 (2006), 482.   Google Scholar

[17]

K. Nosaki and N. Bekki, Low-Dimentional chaos in a driven damped nonlinear Schrödinger equation,, \emph{Physica D: Nonlinear Phenomena}, 21 (1986), 381.  doi: 10.1016/0167-2789(86)90012-6.  Google Scholar

[18]

K. Promislow and J. N. Kutz, Bifurcation and asymptotic stability in the large detuning limit of optical parametric oscillator,, \emph{Nonlinearity}, 13 (2000), 675.  doi: 10.1088/0951-7715/13/3/310.  Google Scholar

[19]

J.C. Robinson, Infinite-Dimensionel Dynamical Systems, An Introduction To Dissipative Parabolic PDEs And The Theorie Of Global Attractors,, Cambridge Texts in Applied Mathematics. Cambridge University Press, (2001).   Google Scholar

[20]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $R^2$,, \emph{J. Funct. Anal.}, 219 (2005), 340.  doi: 10.1016/j.jfa.2004.06.013.  Google Scholar

[21]

R. Temam, Infinite-Dimensional Dynamical Systems In Mechanics and Physics,, Springer applied mathmatical sciences, 68 (1997).   Google Scholar

[22]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors,, \emph{Physica D: Nonlinear Phenomena}, 88 (1995), 167.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

show all references

References:
[1]

B. Alouini, Long-time behavior of a Bose-Einstein equation in a two dimensional thin domain,, \emph{Communications in Pure and Applied Analysis}, 10 (2011), 1629.  doi: 10.3934/cpaa.2011.10.1629.  Google Scholar

[2]

B. Alouini and O. Goubet, Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain,, \emph{Discrete Continuous Dynam. Systems - B}, 19 (2014), 651.  doi: 10.3934/dcdsb.2014.19.651.  Google Scholar

[3]

J. M. Ball, Global attractors for damped semilinear wave equations,, \emph{Discrete Continuous Dynam. Systems - A}, 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator,, \emph{Proc. Indian. Acad. Sci. (Math. Sci.)}, 116 (2006), 337.  doi: 10.1007/BF02829750.  Google Scholar

[5]

C. C. Bradlay, C. A. Sackett and R. G. Hulet, Bose-Einstein condensation of lithium: observation of limited condensate number,, \emph{Phys. Rev. Lett.}, 78 (1997), 985.  doi: 10.1103/PhysRevLett.78.985.  Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext, (2011).   Google Scholar

[7]

R. Carles, Remarks on nonlinear Schrödinger equation with harmonic potential,, \emph{Annales Henri Poincare}, 3 (2002), 757.  doi: 10.1007/s00023-002-8635-4.  Google Scholar

[8]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, 10 (2003).   Google Scholar

[9]

I. D. Chueshov, Introduction to The Theory of Infinite-Dimensional Dissipative Systems,, University Lectures in Contemporary Mathematics, (2002).   Google Scholar

[10]

I. D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations With Nonlinear Damping,, Memoirs of the American Mathematical Society, 195 (2008).   Google Scholar

[11]

G. B. Folland, Fourier Analysis and Its Applications,, The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, (1992).   Google Scholar

[12]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $R^2$,, \emph{Advances in Differential Equations}, 3 (1998), 337.   Google Scholar

[13]

O. Goubet and L. Legry, Finite dimensional global attractor for a parametric nonlinear Schrödinger system with a trapping potential,, \emph{Nonlinear Analysis}, 72 (2010), 4397.  doi: 10.1016/j.na.2010.02.013.  Google Scholar

[14]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anormalous dispersion,, \emph{Applied Physics Lettres}, 23 (1973), 14.  doi: 10.1063/1.1654836.  Google Scholar

[15]

P. Lauren\ccot, Long-time behavior for weakly damped driven nonlinear Schrödinger equations in $R^N,N\leq 3$,, \emph{NoDEA}, 2 (1995), 357.  doi: 10.1007/BF01261181.  Google Scholar

[16]

Q. Liu, Y. Zhou, J. Zhang and W. Zhang, Sharp condition of global existence for nonlinear Schrödinger equation with a harmonic potential,, \emph{Appl. Math. Comput.}, 177 (2006), 482.   Google Scholar

[17]

K. Nosaki and N. Bekki, Low-Dimentional chaos in a driven damped nonlinear Schrödinger equation,, \emph{Physica D: Nonlinear Phenomena}, 21 (1986), 381.  doi: 10.1016/0167-2789(86)90012-6.  Google Scholar

[18]

K. Promislow and J. N. Kutz, Bifurcation and asymptotic stability in the large detuning limit of optical parametric oscillator,, \emph{Nonlinearity}, 13 (2000), 675.  doi: 10.1088/0951-7715/13/3/310.  Google Scholar

[19]

J.C. Robinson, Infinite-Dimensionel Dynamical Systems, An Introduction To Dissipative Parabolic PDEs And The Theorie Of Global Attractors,, Cambridge Texts in Applied Mathematics. Cambridge University Press, (2001).   Google Scholar

[20]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $R^2$,, \emph{J. Funct. Anal.}, 219 (2005), 340.  doi: 10.1016/j.jfa.2004.06.013.  Google Scholar

[21]

R. Temam, Infinite-Dimensional Dynamical Systems In Mechanics and Physics,, Springer applied mathmatical sciences, 68 (1997).   Google Scholar

[22]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors,, \emph{Physica D: Nonlinear Phenomena}, 88 (1995), 167.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[3]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[4]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[5]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[6]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[7]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[8]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[9]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[10]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[11]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[12]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[15]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[16]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[17]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021018

[18]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[19]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[20]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]