September  2015, 14(5): 1781-1801. doi: 10.3934/cpaa.2015.14.1781

Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain

1. 

Unité de recherche: Ondelettes et Fractals, Faculté des Sciences de Monastir, Av. de l'environnement, 5000 Monastir

Received  September 2014 Revised  March 2015 Published  June 2015

We study the long-time behavior of the solutions to a nonlinear damped driven Schrödinger type equation with quadratic potential on a strip. We prove that this behavior is described by a regular compact global attractor with finite fractal dimension.
Citation: Brahim Alouini. Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1781-1801. doi: 10.3934/cpaa.2015.14.1781
References:
[1]

B. Alouini, Long-time behavior of a Bose-Einstein equation in a two dimensional thin domain,, \emph{Communications in Pure and Applied Analysis}, 10 (2011), 1629. doi: 10.3934/cpaa.2011.10.1629. Google Scholar

[2]

B. Alouini and O. Goubet, Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain,, \emph{Discrete Continuous Dynam. Systems - B}, 19 (2014), 651. doi: 10.3934/dcdsb.2014.19.651. Google Scholar

[3]

J. M. Ball, Global attractors for damped semilinear wave equations,, \emph{Discrete Continuous Dynam. Systems - A}, 10 (2004), 31. doi: 10.3934/dcds.2004.10.31. Google Scholar

[4]

B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator,, \emph{Proc. Indian. Acad. Sci. (Math. Sci.)}, 116 (2006), 337. doi: 10.1007/BF02829750. Google Scholar

[5]

C. C. Bradlay, C. A. Sackett and R. G. Hulet, Bose-Einstein condensation of lithium: observation of limited condensate number,, \emph{Phys. Rev. Lett.}, 78 (1997), 985. doi: 10.1103/PhysRevLett.78.985. Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext, (2011). Google Scholar

[7]

R. Carles, Remarks on nonlinear Schrödinger equation with harmonic potential,, \emph{Annales Henri Poincare}, 3 (2002), 757. doi: 10.1007/s00023-002-8635-4. Google Scholar

[8]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, 10 (2003). Google Scholar

[9]

I. D. Chueshov, Introduction to The Theory of Infinite-Dimensional Dissipative Systems,, University Lectures in Contemporary Mathematics, (2002). Google Scholar

[10]

I. D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations With Nonlinear Damping,, Memoirs of the American Mathematical Society, 195 (2008). Google Scholar

[11]

G. B. Folland, Fourier Analysis and Its Applications,, The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, (1992). Google Scholar

[12]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $R^2$,, \emph{Advances in Differential Equations}, 3 (1998), 337. Google Scholar

[13]

O. Goubet and L. Legry, Finite dimensional global attractor for a parametric nonlinear Schrödinger system with a trapping potential,, \emph{Nonlinear Analysis}, 72 (2010), 4397. doi: 10.1016/j.na.2010.02.013. Google Scholar

[14]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anormalous dispersion,, \emph{Applied Physics Lettres}, 23 (1973), 14. doi: 10.1063/1.1654836. Google Scholar

[15]

P. Lauren\ccot, Long-time behavior for weakly damped driven nonlinear Schrödinger equations in $R^N,N\leq 3$,, \emph{NoDEA}, 2 (1995), 357. doi: 10.1007/BF01261181. Google Scholar

[16]

Q. Liu, Y. Zhou, J. Zhang and W. Zhang, Sharp condition of global existence for nonlinear Schrödinger equation with a harmonic potential,, \emph{Appl. Math. Comput.}, 177 (2006), 482. Google Scholar

[17]

K. Nosaki and N. Bekki, Low-Dimentional chaos in a driven damped nonlinear Schrödinger equation,, \emph{Physica D: Nonlinear Phenomena}, 21 (1986), 381. doi: 10.1016/0167-2789(86)90012-6. Google Scholar

[18]

K. Promislow and J. N. Kutz, Bifurcation and asymptotic stability in the large detuning limit of optical parametric oscillator,, \emph{Nonlinearity}, 13 (2000), 675. doi: 10.1088/0951-7715/13/3/310. Google Scholar

[19]

J.C. Robinson, Infinite-Dimensionel Dynamical Systems, An Introduction To Dissipative Parabolic PDEs And The Theorie Of Global Attractors,, Cambridge Texts in Applied Mathematics. Cambridge University Press, (2001). Google Scholar

[20]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $R^2$,, \emph{J. Funct. Anal.}, 219 (2005), 340. doi: 10.1016/j.jfa.2004.06.013. Google Scholar

[21]

R. Temam, Infinite-Dimensional Dynamical Systems In Mechanics and Physics,, Springer applied mathmatical sciences, 68 (1997). Google Scholar

[22]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors,, \emph{Physica D: Nonlinear Phenomena}, 88 (1995), 167. doi: 10.1016/0167-2789(95)00196-B. Google Scholar

show all references

References:
[1]

B. Alouini, Long-time behavior of a Bose-Einstein equation in a two dimensional thin domain,, \emph{Communications in Pure and Applied Analysis}, 10 (2011), 1629. doi: 10.3934/cpaa.2011.10.1629. Google Scholar

[2]

B. Alouini and O. Goubet, Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain,, \emph{Discrete Continuous Dynam. Systems - B}, 19 (2014), 651. doi: 10.3934/dcdsb.2014.19.651. Google Scholar

[3]

J. M. Ball, Global attractors for damped semilinear wave equations,, \emph{Discrete Continuous Dynam. Systems - A}, 10 (2004), 31. doi: 10.3934/dcds.2004.10.31. Google Scholar

[4]

B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator,, \emph{Proc. Indian. Acad. Sci. (Math. Sci.)}, 116 (2006), 337. doi: 10.1007/BF02829750. Google Scholar

[5]

C. C. Bradlay, C. A. Sackett and R. G. Hulet, Bose-Einstein condensation of lithium: observation of limited condensate number,, \emph{Phys. Rev. Lett.}, 78 (1997), 985. doi: 10.1103/PhysRevLett.78.985. Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext, (2011). Google Scholar

[7]

R. Carles, Remarks on nonlinear Schrödinger equation with harmonic potential,, \emph{Annales Henri Poincare}, 3 (2002), 757. doi: 10.1007/s00023-002-8635-4. Google Scholar

[8]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, 10 (2003). Google Scholar

[9]

I. D. Chueshov, Introduction to The Theory of Infinite-Dimensional Dissipative Systems,, University Lectures in Contemporary Mathematics, (2002). Google Scholar

[10]

I. D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations With Nonlinear Damping,, Memoirs of the American Mathematical Society, 195 (2008). Google Scholar

[11]

G. B. Folland, Fourier Analysis and Its Applications,, The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, (1992). Google Scholar

[12]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $R^2$,, \emph{Advances in Differential Equations}, 3 (1998), 337. Google Scholar

[13]

O. Goubet and L. Legry, Finite dimensional global attractor for a parametric nonlinear Schrödinger system with a trapping potential,, \emph{Nonlinear Analysis}, 72 (2010), 4397. doi: 10.1016/j.na.2010.02.013. Google Scholar

[14]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anormalous dispersion,, \emph{Applied Physics Lettres}, 23 (1973), 14. doi: 10.1063/1.1654836. Google Scholar

[15]

P. Lauren\ccot, Long-time behavior for weakly damped driven nonlinear Schrödinger equations in $R^N,N\leq 3$,, \emph{NoDEA}, 2 (1995), 357. doi: 10.1007/BF01261181. Google Scholar

[16]

Q. Liu, Y. Zhou, J. Zhang and W. Zhang, Sharp condition of global existence for nonlinear Schrödinger equation with a harmonic potential,, \emph{Appl. Math. Comput.}, 177 (2006), 482. Google Scholar

[17]

K. Nosaki and N. Bekki, Low-Dimentional chaos in a driven damped nonlinear Schrödinger equation,, \emph{Physica D: Nonlinear Phenomena}, 21 (1986), 381. doi: 10.1016/0167-2789(86)90012-6. Google Scholar

[18]

K. Promislow and J. N. Kutz, Bifurcation and asymptotic stability in the large detuning limit of optical parametric oscillator,, \emph{Nonlinearity}, 13 (2000), 675. doi: 10.1088/0951-7715/13/3/310. Google Scholar

[19]

J.C. Robinson, Infinite-Dimensionel Dynamical Systems, An Introduction To Dissipative Parabolic PDEs And The Theorie Of Global Attractors,, Cambridge Texts in Applied Mathematics. Cambridge University Press, (2001). Google Scholar

[20]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $R^2$,, \emph{J. Funct. Anal.}, 219 (2005), 340. doi: 10.1016/j.jfa.2004.06.013. Google Scholar

[21]

R. Temam, Infinite-Dimensional Dynamical Systems In Mechanics and Physics,, Springer applied mathmatical sciences, 68 (1997). Google Scholar

[22]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors,, \emph{Physica D: Nonlinear Phenomena}, 88 (1995), 167. doi: 10.1016/0167-2789(95)00196-B. Google Scholar

[1]

Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651

[2]

Florian Méhats, Christof Sparber. Dimension reduction for rotating Bose-Einstein condensates with anisotropic confinement. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5097-5118. doi: 10.3934/dcds.2016021

[3]

Weizhu Bao, Loïc Le Treust, Florian Méhats. Dimension reduction for dipolar Bose-Einstein condensates in the strong interaction regime. Kinetic & Related Models, 2017, 10 (3) : 553-571. doi: 10.3934/krm.2017022

[4]

Brahim Alouini. Long-time behavior of a Bose-Einstein equation in a two-dimensional thin domain. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1629-1643. doi: 10.3934/cpaa.2011.10.1629

[5]

Xuguang Lu. Long time strong convergence to Bose-Einstein distribution for low temperature. Kinetic & Related Models, 2018, 11 (4) : 715-734. doi: 10.3934/krm.2018029

[6]

P.G. Kevrekidis, Dimitri J. Frantzeskakis. Multiple dark solitons in Bose-Einstein condensates at finite temperatures. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1199-1212. doi: 10.3934/dcdss.2011.4.1199

[7]

Weizhu Bao, Yongyong Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic & Related Models, 2013, 6 (1) : 1-135. doi: 10.3934/krm.2013.6.1

[8]

Pedro J. Torres, R. Carretero-González, S. Middelkamp, P. Schmelcher, Dimitri J. Frantzeskakis, P.G. Kevrekidis. Vortex interaction dynamics in trapped Bose-Einstein condensates. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1589-1615. doi: 10.3934/cpaa.2011.10.1589

[9]

Vadym Vekslerchik, Víctor M. Pérez-García. Exact solution of the two-mode model of multicomponent Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 179-192. doi: 10.3934/dcdsb.2003.3.179

[10]

Vladimir S. Gerdjikov. Bose-Einstein condensates and spectral properties of multicomponent nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1181-1197. doi: 10.3934/dcdss.2011.4.1181

[11]

Liren Lin, I-Liang Chern. A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1119-1128. doi: 10.3934/dcdsb.2014.19.1119

[12]

Kui Li, Zhitao Zhang. A perturbation result for system of Schrödinger equations of Bose-Einstein condensates in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 851-860. doi: 10.3934/dcds.2016.36.851

[13]

Anne de Bouard, Reika Fukuizumi, Romain Poncet. Vortex solutions in Bose-Einstein condensation under a trapping potential varying randomly in time. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2793-2817. doi: 10.3934/dcdsb.2015.20.2793

[14]

Dong Deng, Ruikuan Liu. Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3175-3193. doi: 10.3934/dcdsb.2018306

[15]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[16]

Uta Renata Freiberg. Einstein relation on fractal objects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 509-525. doi: 10.3934/dcdsb.2012.17.509

[17]

Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939

[18]

Delin Wu and Chengkui Zhong. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic Research Announcements, 2006, 12: 63-70.

[19]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[20]

Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]