• Previous Article
    On the initial value problem of fractional stochastic evolution equations in Hilbert spaces
  • CPAA Home
  • This Issue
  • Next Article
    Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain
September  2015, 14(5): 1803-1816. doi: 10.3934/cpaa.2015.14.1803

Positive solution for quasilinear Schrödinger equations with a parameter

1. 

Business School of Hunan University, Changsha, Hunan 410082, China

Received  September 2014 Revised  February 2015 Published  June 2015

In this paper, we study the following quasilinear Schrödinger equations of the form \begin{eqnarray} -\Delta u+V(x)u-[\Delta(1+u^2)^{\alpha/2}]\frac{\alpha u}{2(1+u^2)^{(2-\alpha)/2}}=\mathrm{g}(x,u), \end{eqnarray} where $1 \le \alpha \le 2$, $N \ge 3$, $V\in C(R^N, R)$ and $\mathrm{g}\in C(R^N\times R, R)$. By using a change of variables, we get new equations, whose respective associated functionals are well defined in $H^1(R^N)$ and satisfy the geometric hypotheses of the mountain pass theorem. Using the special techniques, the existence of positive solutions is studied.
Citation: GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803
References:
[1]

J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations: the critical exponential case,, \emph{Nonlinear Anal.}, 67 (2007), 3357.  doi: 10.1016/j.na.2006.10.018.  Google Scholar

[2]

J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations}, 248 (2010), 722.  doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[3]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach,, \emph{Nonlinear Analysis: Theorey, 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[4]

Y. Cheng and J. Yang, Positive solution to a class of relativistic nonlinear Schrödinger equation,, \emph{J. Math. Anal. Appl.}, 411 (2014), 665.  doi: 10.1016/j.jmaa.2013.10.006.  Google Scholar

[5]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, \emph{Journal of the physical Society of Japan}, 50 (1981), 3262.   Google Scholar

[6]

P. L. Lions, The concentration-compactness principle in the calculus of variations: the locally compact cases, part I and part II,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\, 1 (1984), 109.   Google Scholar

[7]

A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves,, \emph{JETP Letters}, 27 (1978), 517.   Google Scholar

[8]

J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, \emph{Journal of Differential Equations}, 187 (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[9]

E. W. Laedke, K. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, \emph{Journal of Mathematical Physics}, 24 (1983), 2764.  doi: 10.1063/1.525675.  Google Scholar

[10]

J. Liu and Z. Q. Wang, Soliton solutions for a quasilinear Schrödinger equations I,, \emph{Proc. Amer. Math. Soc.}, 131 (2003), 441.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[11]

J. Liu, Y. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, \emph{Comm. Partial Differential Equations}, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[12]

A. Nakamura, Damping and modification of exciton solitary waves,, \emph{J. Phys. Soc.}, 42 (1977), 1823.   Google Scholar

[13]

J. M. do Ó and U. Secero, Solitary waves for a class of quasilinear Schrödinger equations in dimension two,, \emph{Cale. Var. Partial Differential Equations}, 38 (2010), 275.  doi: 10.1007/s00526-009-0286-6.  Google Scholar

[14]

M. Porkolab and M. V. Goldman, Upper hybrid solitons and oscillating two-stream instabilities,, \emph{Phys. Fluids}, 19 (1976), 872.   Google Scholar

[15]

M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, \emph{Calc. Var. Partial Differential Equations}, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[16]

D. Ruiz and G. Siciliano, Existence of ground states for a modified nonlinear Schrödinger equation,, \emph{Nonlinearity}, 23 (2010), 1221.  doi: 10.1088/0951-7715/23/5/011.  Google Scholar

[17]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations,, \emph{Nonlinear Analysis: Theorem, 80 (2013), 194.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[18]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth,, \emph{Calc. Var. Partial Differential Equations}, 39 (2010), 722.  doi: 10.1007/s00526-009-0299-1.  Google Scholar

[19]

Xian Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter,, \emph{J. Differential Equations}, 256 (2014), 2619.  doi: 10.1016/j.jde.2014.01.026.  Google Scholar

[20]

M. B. Yang, Existence of solutions for a quasilinear Schrödinger equation with subcritical nonlinearities,, \emph{Nonlinear Analysis}, 75 (2012), 5362.  doi: 10.1016/j.na.2012.04.054.  Google Scholar

[21]

J. Zhang, X. H. Tang and W. Zhang, Existence of infinitely many solutions for a quasilinear elliptic equation,, \emph{Applied Mathematics Letters}, 37 (2014), 131.  doi: 10.1016/j.aml.2014.06.010.  Google Scholar

[22]

J. Zhang, X. H. Tang and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential,, \emph{Journal of Mathematical Analysis and Applications}, 420 (2014), 1762.  doi: 10.1016/j.jmaa.2014.06.055.  Google Scholar

show all references

References:
[1]

J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations: the critical exponential case,, \emph{Nonlinear Anal.}, 67 (2007), 3357.  doi: 10.1016/j.na.2006.10.018.  Google Scholar

[2]

J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations}, 248 (2010), 722.  doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[3]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach,, \emph{Nonlinear Analysis: Theorey, 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[4]

Y. Cheng and J. Yang, Positive solution to a class of relativistic nonlinear Schrödinger equation,, \emph{J. Math. Anal. Appl.}, 411 (2014), 665.  doi: 10.1016/j.jmaa.2013.10.006.  Google Scholar

[5]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, \emph{Journal of the physical Society of Japan}, 50 (1981), 3262.   Google Scholar

[6]

P. L. Lions, The concentration-compactness principle in the calculus of variations: the locally compact cases, part I and part II,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\, 1 (1984), 109.   Google Scholar

[7]

A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves,, \emph{JETP Letters}, 27 (1978), 517.   Google Scholar

[8]

J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, \emph{Journal of Differential Equations}, 187 (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[9]

E. W. Laedke, K. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, \emph{Journal of Mathematical Physics}, 24 (1983), 2764.  doi: 10.1063/1.525675.  Google Scholar

[10]

J. Liu and Z. Q. Wang, Soliton solutions for a quasilinear Schrödinger equations I,, \emph{Proc. Amer. Math. Soc.}, 131 (2003), 441.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[11]

J. Liu, Y. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, \emph{Comm. Partial Differential Equations}, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[12]

A. Nakamura, Damping and modification of exciton solitary waves,, \emph{J. Phys. Soc.}, 42 (1977), 1823.   Google Scholar

[13]

J. M. do Ó and U. Secero, Solitary waves for a class of quasilinear Schrödinger equations in dimension two,, \emph{Cale. Var. Partial Differential Equations}, 38 (2010), 275.  doi: 10.1007/s00526-009-0286-6.  Google Scholar

[14]

M. Porkolab and M. V. Goldman, Upper hybrid solitons and oscillating two-stream instabilities,, \emph{Phys. Fluids}, 19 (1976), 872.   Google Scholar

[15]

M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, \emph{Calc. Var. Partial Differential Equations}, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[16]

D. Ruiz and G. Siciliano, Existence of ground states for a modified nonlinear Schrödinger equation,, \emph{Nonlinearity}, 23 (2010), 1221.  doi: 10.1088/0951-7715/23/5/011.  Google Scholar

[17]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations,, \emph{Nonlinear Analysis: Theorem, 80 (2013), 194.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[18]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth,, \emph{Calc. Var. Partial Differential Equations}, 39 (2010), 722.  doi: 10.1007/s00526-009-0299-1.  Google Scholar

[19]

Xian Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter,, \emph{J. Differential Equations}, 256 (2014), 2619.  doi: 10.1016/j.jde.2014.01.026.  Google Scholar

[20]

M. B. Yang, Existence of solutions for a quasilinear Schrödinger equation with subcritical nonlinearities,, \emph{Nonlinear Analysis}, 75 (2012), 5362.  doi: 10.1016/j.na.2012.04.054.  Google Scholar

[21]

J. Zhang, X. H. Tang and W. Zhang, Existence of infinitely many solutions for a quasilinear elliptic equation,, \emph{Applied Mathematics Letters}, 37 (2014), 131.  doi: 10.1016/j.aml.2014.06.010.  Google Scholar

[22]

J. Zhang, X. H. Tang and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential,, \emph{Journal of Mathematical Analysis and Applications}, 420 (2014), 1762.  doi: 10.1016/j.jmaa.2014.06.055.  Google Scholar

[1]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[2]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[8]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[9]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[12]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[13]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[14]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[15]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[16]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[17]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[18]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[19]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]