Citation: |
[1] |
J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations: the critical exponential case, Nonlinear Anal., 67 (2007), 3357-3372.doi: 10.1016/j.na.2006.10.018. |
[2] |
J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744.doi: 10.1016/j.jde.2009.11.030. |
[3] |
M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Analysis: Theorey, Methods $&$ Applications, 56 (2004), 213-226.doi: 10.1016/j.na.2003.09.008. |
[4] |
Y. Cheng and J. Yang, Positive solution to a class of relativistic nonlinear Schrödinger equation, J. Math. Anal. Appl., 411 (2014), 665-674.doi: 10.1016/j.jmaa.2013.10.006. |
[5] |
S. Kurihara, Large-amplitude quasi-solitons in superfluid films, Journal of the physical Society of Japan, 50 (1981), 3262-3267. |
[6] |
P. L. Lions, The concentration-compactness principle in the calculus of variations: the locally compact cases, part I and part II, Ann. Inst. H. Poincaré Anal. Non Linëaire, 1 (1984), 109-145, 223-283. |
[7] |
A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves, JETP Letters, 27 (1978), 517-520. |
[8] |
J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II, Journal of Differential Equations, 187 (2003), 473-493.doi: 10.1016/S0022-0396(02)00064-5. |
[9] |
E. W. Laedke, K. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, Journal of Mathematical Physics, 24 (1983), 2764-2769.doi: 10.1063/1.525675. |
[10] |
J. Liu and Z. Q. Wang, Soliton solutions for a quasilinear Schrödinger equations I, Proc. Amer. Math. Soc., 131 (2003), 441-448.doi: 10.1090/S0002-9939-02-06783-7. |
[11] |
J. Liu, Y. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-892.doi: 10.1081/PDE-120037335. |
[12] |
A. Nakamura, Damping and modification of exciton solitary waves, J. Phys. Soc., 42 (1977), 1823-1835. |
[13] |
J. M. do Ó and U. Secero, Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Cale. Var. Partial Differential Equations, 38 (2010), 275-315.doi: 10.1007/s00526-009-0286-6. |
[14] |
M. Porkolab and M. V. Goldman, Upper hybrid solitons and oscillating two-stream instabilities, Phys. Fluids, 19 (1976), 872-881. |
[15] |
M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.doi: 10.1007/s005260100105. |
[16] |
D. Ruiz and G. Siciliano, Existence of ground states for a modified nonlinear Schrödinger equation, Nonlinearity, 23 (2010), 1221-1233.doi: 10.1088/0951-7715/23/5/011. |
[17] |
Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Analysis: Theorem, Methods $&$ Applications, 80 (2013), 194-201.doi: 10.1016/j.na.2012.10.005. |
[18] |
E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 722-744.doi: 10.1007/s00526-009-0299-1. |
[19] |
Xian Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter, J. Differential Equations, 256 (2014), 2619-2632.doi: 10.1016/j.jde.2014.01.026. |
[20] |
M. B. Yang, Existence of solutions for a quasilinear Schrödinger equation with subcritical nonlinearities, Nonlinear Analysis, 75 (2012), 5362-5373.doi: 10.1016/j.na.2012.04.054. |
[21] |
J. Zhang, X. H. Tang and W. Zhang, Existence of infinitely many solutions for a quasilinear elliptic equation, Applied Mathematics Letters, 37 (2014), 131-135.doi: 10.1016/j.aml.2014.06.010. |
[22] |
J. Zhang, X. H. Tang and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential, Journal of Mathematical Analysis and Applications, 420 (2014), 1762-1775.doi: 10.1016/j.jmaa.2014.06.055. |