September  2015, 14(5): 1817-1840. doi: 10.3934/cpaa.2015.14.1817

On the initial value problem of fractional stochastic evolution equations in Hilbert spaces

1. 

Department of Mathematics, Northwest Normal University, Lanzhou 730070, China, China, China

Received  January 2015 Revised  March 2015 Published  June 2015

In this article, we are concerned with the initial value problem of fractional stochastic evolution equations in real separable Hilbert spaces. The existence of saturated mild solutions and global mild solutions is obtained under the situation that the nonlinear term satisfies some appropriate growth conditions by using $\alpha$-order fractional resolvent operator theory, the Schauder fixed point theorem and piecewise extension method. Furthermore, the continuous dependence of mild solutions on initial values and orders as well as the asymptotical stability in $p$-th moment of mild solutions for the studied problem have also been discussed. The results obtained in this paper improve and extend some related conclusions on this topic. An example is also given to illustrate the feasibility of our abstract results.
Citation: Pengyu Chen, Yongxiang Li, Xuping Zhang. On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1817-1840. doi: 10.3934/cpaa.2015.14.1817
References:
[1]

R. P. Agarwal, V. Lakshmikantham and J. J. Nieto, On the concept of solutions for fractional differential equations with uncertainly, Nonlinear Anal., 72 (2010), 2859-2862. doi: 10.1016/j.na.2009.11.029.

[2]

E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph.D thesis, Department of Mathematics, Eindhoven University of Technology, 2001. Available from: http://www.researchgate.net/publication/230675246_Fractional_Evolution_Equations_in_Banach_Spaces.

[3]

J. Bao and Z. Hou, Existence of mild solutions to stochastic neutral partial functional differential equations with non-Lipschitz coefficients, Comput. Math. Appl., 59 (2010), 207-214. doi: 10.1016/j.camwa.2009.08.035.

[4]

J. Bao, Z. Hou and C. Yuan, Stability in distribution of mild solutions to stochastic partial differential equations, Proc. Amer. Math. Soc., 138 (2010), 2169-2180. doi: 10.1090/S0002-9939-10-10230-5.

[5]

C. Chen and M. Li, On fractional resolvent operator functions, Semigroup Forum, 80 (2010), 121-142. doi: 10.1007/s00233-009-9184-7.

[6]

C. Chen, M. Li and F. B. Li, On boundary values of fractional resolvent families, J. Math. Anal. Appl., 384 (2011), 453-467. doi: 10.1016/j.jmaa.2011.05.074.

[7]

P. Chen and Y. Li, Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65 (2014), 711-728. doi: 10.1007/s00033-013-0351-z.

[8]

P. Chen and Y. Li, Nonlocal Cauchy problem for fractional stochastic evolution equations in Hilbert spaces, Collect. Math., 66 (2015), 63-76 . doi: 10.1007/s13348-014-0106-y.

[9]

J. Cui and L. Yan, Existence result for fractional neutral stochastic integro-differential equations with infinite delay, J. Phys. A, 44 (2011), 335201. doi: 10.1088/1751-8113/44/33/335201.

[10]

J. Cui, L. Yan and X. Wu, Nonlocal Cauchy problem for some stochastic integro-differential equations in Hilbert spaces, J. Korean Stat. Soci., 41 (2012), 279-290. doi: 10.1016/j.jkss.2011.10.001.

[11]

R. F. Curtain and P. L. Falb, Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), 412-430.

[12]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.

[13]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255. doi: 10.1016/j.jde.2003.12.002.

[14]

M. M. EI-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos, Solitons and Fractals, 14 (2002), 433-440. doi: 10.1016/S0960-0779(01)00208-9.

[15]

M. M. EI-Borai, O. L. Mostafa and H. M. Ahmed, Asymptotic stability of some stochastic evolution equations, Appl. Math. Comput., 144 (2003), 273-286. doi: 10.1016/S0096-3003(02)00406-X.

[16]

Z. Fan, Characterization of compactness for resolvents and its applications, Appl. Math. Comput., 232 (2014), 60-67. doi: 10.1016/j.amc.2014.01.051.

[17]

W. Grecksch and C. Tudor, Stochastic Evolution Equations: A Hilbert Space Approach, Akademic Verlag, Berlin, 1995.

[18]

J. Jia, J. Peng and K. Li, Well-posedness of abstract distributed-order fractional diffusion equations, Commun. Pure Appl. Anal., 13 (2014), 605-621. doi: 10.3934/cpaa.2014.13.605.

[19]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in North-Holland Mathematics Studies, vol. 204, Elsevier Science B. V., Amsterdam, 2006.

[20]

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 1677-1682. doi: 10.1016/j.na.2007.08.042.

[21]

M. Li, C. Chen and F. B. Li, On fractional powers of generators of fractional resolvent families, J. Funct. Anal., 259 (2010), 2702-2726. doi: 10.1016/j.jfa.2010.07.007.

[22]

K. Li, J. Peng and J. Jia, Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives, J. Funct. Anal., 263 (2012), 476-510. doi: 10.1016/j.jfa.2012.04.011.

[23]

K. Li and J. Peng, Fractional resolvents and fractional evolution equations, Appl. Math. Lett., 25 (2012), 808-812. doi: 10.1016/j.aml.2011.10.023.

[24]

K. Li and J. Peng, Fractional abstract Cauchy problems, Integr. Equ. Oper. Theory, 70 (2011), 333-361. doi: 10.1007/s00020-011-1864-5.

[25]

K. Li and J. Peng, Controllability of fractional neutral stochastic functional differential systems, Z. Angew. Math. Phys., 65 (2014), 941-959. doi: 10.1007/s00033-013-0369-2.

[26]

K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Chapman and Hall, London, 2006.

[27]

J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl., 342 (2008), 753-760. doi: 10.1016/j.jmaa.2007.11.019.

[28]

J. Luo and T. Taniguchi, Fixed point and stability of stochastic neutral partial differential equations with infinite delays, Stoch. Anal. Appl., 27 (2009), 1163-1173. doi: 10.1080/07362990903259371 .

[29]

X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing Ltd., Chichester, 1997.

[30]

M. Niu and B. Xie, Regularity of a fractional partial differential equation driven by space-time white noise, Proc. Amer. Math. Soc., 138 (2010), 1479-1489. doi: 10.1090/S0002-9939-09-10197-1.

[31]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[32]

T. Poinot and J. C. Trigeassou, Identification of fractional systems using an output-error technique, Nonl. Dynamics, 38 (2004), 133-154. doi: 10.1007/s11071-004-3751-y.

[33]

J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-8570-6.

[34]

Y. Ren and R. Sakthivel, Existence, uniqueness, and stability of mild solutions for second-order neutral stochastic evolution equations with infinite delay and Poisson jumps, J. Math. Phys., 53 (2012), 14 pages. doi: 10.1063/1.4739406.

[35]

Y. Ren, Q. Zhou and L. Chen, Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with poisson jumps and infinite delay, J. Optim. Theory Appl., 149 (2011), 315-331. doi: 10.1007/s10957-010-9792-0.

[36]

Y. A. Rossikhin and M. V. Shitikova, Application of fractional dericatives to the analysis of damped vibrations of viscoelastic single mass system, Acta. Mech., 120 (1997), 109-125. doi: 10.1007/BF01174319.

[37]

J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Development and Applications in Physics and Engineering, Springer, The Netherlands, 2007. doi: 10.1007/978-1-4020-6042-7.

[38]

R. Sakthivel and J. Luo, Asymptotic stability of impulsive stochastic partial differential equations with infinite delays, J. Math. Anal. Appl., 356 (2009), 1-6. doi: 10.1016/j.jmaa.2009.02.002.

[39]

R. Sakthivel and Y. Ren, Exponential stability of second-order stochastic evolution equations with Poisson jumps, Commu. Nonl. Sci. Nume. Simu., 17 (2012), 4517-4523. doi: 10.1016/j.cnsns.2012.04.020.

[40]

R. Sakthivel, P. Revathi and N. I. Mahmudov, Asymptotic stability of fractional stochastic neutral differential equations with infinite delays, Abstr. Appl. Anal., 2013 (2013), Article ID 769257, 9 pages. doi: 10.1155/2013/769257.

[41]

R. Sakthivel, P. Revathi and Y. Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Anal., 81 (2013), 70-86. doi: 10.1016/j.na.2012.10.009.

[42]

R. Sakthivel, S. Suganyab and S. M. Anthonib, Approximate controllability of fractional stochastic evolution equations, Comput. Math. Appl., 63 (2012), 660-668. doi: 10.1016/j.camwa.2011.11.024.

[43]

K. Sobczyk, Stochastic Differential Equations with Applications to Physics and Engineering, Kluwer Academic Publishers, London, 1991. doi: 10.1007/978-94-011-3712-6.

[44]

T. Taniguchi, K. Liu and A. Truman, Existence, uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. Differential Equations, 181 (2002), 72-91. doi: 10.1006/jdeq.2001.4073.

[45]

M. S. Tvazoei, M. Haeri, S. Jafari, S. Bolouki and M. Siami, Some applications of fractional calculus in suppression of chaotic oscillations, IEEE Transactions on Industrial Electronics, 11 (2008), 4094-4101. doi: 10.1109/TIE.2008.925774.

[46]

J. Wang and Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl., 12 (2011), 263-272. doi: 10.1016/j.nonrwa.2010.06.013.

[47]

S. Westerlund and L. Ekstam, Capacitor theory, IEEE Transactions on Dielectrics and Electrical Insulation, 1 (1994), 826-839. doi: 10.1109/94.326654.

[48]

Z. Yan and X. Yan, Existence of solutions for impulsive partial stochastic neutral integrodifferential equations with state-dependent delay, Collec. Math., 64 (2013), 235-250. doi: 10.1007/s13348-012-0063-2.

[49]

Z. Yan and X. Yan, Existence of solutions for a impulsive nonlocal stochastic functional integrodifferential inclusion in Hilbert spaces, Z. Angew. Math. Phys., 64 (2013), 573-590. doi: 10.1007/s00033-012-0249-1.

[50]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077. doi: 10.1016/j.camwa.2009.06.026.

show all references

References:
[1]

R. P. Agarwal, V. Lakshmikantham and J. J. Nieto, On the concept of solutions for fractional differential equations with uncertainly, Nonlinear Anal., 72 (2010), 2859-2862. doi: 10.1016/j.na.2009.11.029.

[2]

E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph.D thesis, Department of Mathematics, Eindhoven University of Technology, 2001. Available from: http://www.researchgate.net/publication/230675246_Fractional_Evolution_Equations_in_Banach_Spaces.

[3]

J. Bao and Z. Hou, Existence of mild solutions to stochastic neutral partial functional differential equations with non-Lipschitz coefficients, Comput. Math. Appl., 59 (2010), 207-214. doi: 10.1016/j.camwa.2009.08.035.

[4]

J. Bao, Z. Hou and C. Yuan, Stability in distribution of mild solutions to stochastic partial differential equations, Proc. Amer. Math. Soc., 138 (2010), 2169-2180. doi: 10.1090/S0002-9939-10-10230-5.

[5]

C. Chen and M. Li, On fractional resolvent operator functions, Semigroup Forum, 80 (2010), 121-142. doi: 10.1007/s00233-009-9184-7.

[6]

C. Chen, M. Li and F. B. Li, On boundary values of fractional resolvent families, J. Math. Anal. Appl., 384 (2011), 453-467. doi: 10.1016/j.jmaa.2011.05.074.

[7]

P. Chen and Y. Li, Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65 (2014), 711-728. doi: 10.1007/s00033-013-0351-z.

[8]

P. Chen and Y. Li, Nonlocal Cauchy problem for fractional stochastic evolution equations in Hilbert spaces, Collect. Math., 66 (2015), 63-76 . doi: 10.1007/s13348-014-0106-y.

[9]

J. Cui and L. Yan, Existence result for fractional neutral stochastic integro-differential equations with infinite delay, J. Phys. A, 44 (2011), 335201. doi: 10.1088/1751-8113/44/33/335201.

[10]

J. Cui, L. Yan and X. Wu, Nonlocal Cauchy problem for some stochastic integro-differential equations in Hilbert spaces, J. Korean Stat. Soci., 41 (2012), 279-290. doi: 10.1016/j.jkss.2011.10.001.

[11]

R. F. Curtain and P. L. Falb, Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), 412-430.

[12]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.

[13]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255. doi: 10.1016/j.jde.2003.12.002.

[14]

M. M. EI-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos, Solitons and Fractals, 14 (2002), 433-440. doi: 10.1016/S0960-0779(01)00208-9.

[15]

M. M. EI-Borai, O. L. Mostafa and H. M. Ahmed, Asymptotic stability of some stochastic evolution equations, Appl. Math. Comput., 144 (2003), 273-286. doi: 10.1016/S0096-3003(02)00406-X.

[16]

Z. Fan, Characterization of compactness for resolvents and its applications, Appl. Math. Comput., 232 (2014), 60-67. doi: 10.1016/j.amc.2014.01.051.

[17]

W. Grecksch and C. Tudor, Stochastic Evolution Equations: A Hilbert Space Approach, Akademic Verlag, Berlin, 1995.

[18]

J. Jia, J. Peng and K. Li, Well-posedness of abstract distributed-order fractional diffusion equations, Commun. Pure Appl. Anal., 13 (2014), 605-621. doi: 10.3934/cpaa.2014.13.605.

[19]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in North-Holland Mathematics Studies, vol. 204, Elsevier Science B. V., Amsterdam, 2006.

[20]

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 1677-1682. doi: 10.1016/j.na.2007.08.042.

[21]

M. Li, C. Chen and F. B. Li, On fractional powers of generators of fractional resolvent families, J. Funct. Anal., 259 (2010), 2702-2726. doi: 10.1016/j.jfa.2010.07.007.

[22]

K. Li, J. Peng and J. Jia, Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives, J. Funct. Anal., 263 (2012), 476-510. doi: 10.1016/j.jfa.2012.04.011.

[23]

K. Li and J. Peng, Fractional resolvents and fractional evolution equations, Appl. Math. Lett., 25 (2012), 808-812. doi: 10.1016/j.aml.2011.10.023.

[24]

K. Li and J. Peng, Fractional abstract Cauchy problems, Integr. Equ. Oper. Theory, 70 (2011), 333-361. doi: 10.1007/s00020-011-1864-5.

[25]

K. Li and J. Peng, Controllability of fractional neutral stochastic functional differential systems, Z. Angew. Math. Phys., 65 (2014), 941-959. doi: 10.1007/s00033-013-0369-2.

[26]

K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Chapman and Hall, London, 2006.

[27]

J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl., 342 (2008), 753-760. doi: 10.1016/j.jmaa.2007.11.019.

[28]

J. Luo and T. Taniguchi, Fixed point and stability of stochastic neutral partial differential equations with infinite delays, Stoch. Anal. Appl., 27 (2009), 1163-1173. doi: 10.1080/07362990903259371 .

[29]

X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing Ltd., Chichester, 1997.

[30]

M. Niu and B. Xie, Regularity of a fractional partial differential equation driven by space-time white noise, Proc. Amer. Math. Soc., 138 (2010), 1479-1489. doi: 10.1090/S0002-9939-09-10197-1.

[31]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[32]

T. Poinot and J. C. Trigeassou, Identification of fractional systems using an output-error technique, Nonl. Dynamics, 38 (2004), 133-154. doi: 10.1007/s11071-004-3751-y.

[33]

J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-8570-6.

[34]

Y. Ren and R. Sakthivel, Existence, uniqueness, and stability of mild solutions for second-order neutral stochastic evolution equations with infinite delay and Poisson jumps, J. Math. Phys., 53 (2012), 14 pages. doi: 10.1063/1.4739406.

[35]

Y. Ren, Q. Zhou and L. Chen, Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with poisson jumps and infinite delay, J. Optim. Theory Appl., 149 (2011), 315-331. doi: 10.1007/s10957-010-9792-0.

[36]

Y. A. Rossikhin and M. V. Shitikova, Application of fractional dericatives to the analysis of damped vibrations of viscoelastic single mass system, Acta. Mech., 120 (1997), 109-125. doi: 10.1007/BF01174319.

[37]

J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Development and Applications in Physics and Engineering, Springer, The Netherlands, 2007. doi: 10.1007/978-1-4020-6042-7.

[38]

R. Sakthivel and J. Luo, Asymptotic stability of impulsive stochastic partial differential equations with infinite delays, J. Math. Anal. Appl., 356 (2009), 1-6. doi: 10.1016/j.jmaa.2009.02.002.

[39]

R. Sakthivel and Y. Ren, Exponential stability of second-order stochastic evolution equations with Poisson jumps, Commu. Nonl. Sci. Nume. Simu., 17 (2012), 4517-4523. doi: 10.1016/j.cnsns.2012.04.020.

[40]

R. Sakthivel, P. Revathi and N. I. Mahmudov, Asymptotic stability of fractional stochastic neutral differential equations with infinite delays, Abstr. Appl. Anal., 2013 (2013), Article ID 769257, 9 pages. doi: 10.1155/2013/769257.

[41]

R. Sakthivel, P. Revathi and Y. Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Anal., 81 (2013), 70-86. doi: 10.1016/j.na.2012.10.009.

[42]

R. Sakthivel, S. Suganyab and S. M. Anthonib, Approximate controllability of fractional stochastic evolution equations, Comput. Math. Appl., 63 (2012), 660-668. doi: 10.1016/j.camwa.2011.11.024.

[43]

K. Sobczyk, Stochastic Differential Equations with Applications to Physics and Engineering, Kluwer Academic Publishers, London, 1991. doi: 10.1007/978-94-011-3712-6.

[44]

T. Taniguchi, K. Liu and A. Truman, Existence, uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. Differential Equations, 181 (2002), 72-91. doi: 10.1006/jdeq.2001.4073.

[45]

M. S. Tvazoei, M. Haeri, S. Jafari, S. Bolouki and M. Siami, Some applications of fractional calculus in suppression of chaotic oscillations, IEEE Transactions on Industrial Electronics, 11 (2008), 4094-4101. doi: 10.1109/TIE.2008.925774.

[46]

J. Wang and Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl., 12 (2011), 263-272. doi: 10.1016/j.nonrwa.2010.06.013.

[47]

S. Westerlund and L. Ekstam, Capacitor theory, IEEE Transactions on Dielectrics and Electrical Insulation, 1 (1994), 826-839. doi: 10.1109/94.326654.

[48]

Z. Yan and X. Yan, Existence of solutions for impulsive partial stochastic neutral integrodifferential equations with state-dependent delay, Collec. Math., 64 (2013), 235-250. doi: 10.1007/s13348-012-0063-2.

[49]

Z. Yan and X. Yan, Existence of solutions for a impulsive nonlocal stochastic functional integrodifferential inclusion in Hilbert spaces, Z. Angew. Math. Phys., 64 (2013), 573-590. doi: 10.1007/s00033-012-0249-1.

[50]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077. doi: 10.1016/j.camwa.2009.06.026.

[1]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5465-5494. doi: 10.3934/dcdsb.2020354

[2]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[3]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

[4]

Daliang Zhao, Yansheng Liu, Xiaodi Li. Controllability for a class of semilinear fractional evolution systems via resolvent operators. Communications on Pure and Applied Analysis, 2019, 18 (1) : 455-478. doi: 10.3934/cpaa.2019023

[5]

Jitao Liu. On the initial boundary value problem for certain 2D MHD-$\alpha$ equations without velocity viscosity. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1179-1191. doi: 10.3934/cpaa.2016.15.1179

[6]

Yong Zhou, Jia Wei He. New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $. Evolution Equations and Control Theory, 2021, 10 (3) : 491-509. doi: 10.3934/eect.2020077

[7]

Arzu Ahmadova, Nazim I. Mahmudov, Juan J. Nieto. Exponential stability and stabilization of fractional stochastic degenerate evolution equations in a Hilbert space: Subordination principle. Evolution Equations and Control Theory, 2022, 11 (6) : 1997-2015. doi: 10.3934/eect.2022008

[8]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations and Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[9]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure and Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[10]

Yarong Liu, Yejuan Wang. Asymptotic behaviour of time fractional stochastic delay evolution equations with tempered fractional noise. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022157

[11]

Patrizia Pucci, Maria Cesarina Salvatori. On an initial value problem modeling evolution and selection in living systems. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 807-821. doi: 10.3934/dcdss.2014.7.807

[12]

Fausto Ferrari. Mean value properties of fractional second order operators. Communications on Pure and Applied Analysis, 2015, 14 (1) : 83-106. doi: 10.3934/cpaa.2015.14.83

[13]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks and Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[14]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[15]

Zhiyuan Li, Xinchi Huang, Masahiro Yamamoto. Initial-boundary value problems for multi-term time-fractional diffusion equations with $ x $-dependent coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 153-179. doi: 10.3934/eect.2020001

[16]

Jianhua Huang, Tianlong Shen, Yuhong Li. Dynamics of stochastic fractional Boussinesq equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2051-2067. doi: 10.3934/dcdsb.2015.20.2051

[17]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations and Control Theory, 2022, 11 (1) : 95-124. doi: 10.3934/eect.2020104

[18]

Javier Gallegos. Stability and applications of multi-order fractional systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (9) : 5283-5296. doi: 10.3934/dcdsb.2021274

[19]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[20]

Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (142)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]