-
Previous Article
Stability of degenerate parabolic Cauchy problems
- CPAA Home
- This Issue
-
Next Article
General existence of solutions to dynamic programming equations
Mean value properties and unique continuation
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain |
References:
[1] |
G. Aronsson, Extension of functions satisfying Lipschitz conditions,, \emph{Ark. Mat.}, 6 (1967), 551.
|
[2] |
G. Aronsson, On the partial differential equation $u_x^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} =0$,, \emph{Ark. Math.}, 7 (1968), 395.
|
[3] |
G. Aronsson, On certain singular solutions of the partial differential equation $u_x^2 u_{xx} +2u_x u_y u_{xy}+ u_y^2 u_{yy} =0$,, \emph{Manuscripta Mathematica}, 47 (1984), 133.
doi: 10.1007/BF01174590. |
[4] |
F. J. Jr. Almgrem, Dirichlet's problem for multiple valued functions and the regularity of mass minimizing integral currents, minimal submanifolds and geodesics,, in \emph{Proc. Japan -United States Sem.}, (1977), 1.
|
[5] |
S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory,, Springer-Verlag, (1991).
doi: 10.1007/b97238. |
[6] |
G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, \emph{Bull. of the American Mathematical Society (New series)}, 41 (2004), 439.
doi: 10.1090/S0273-0979-04-01035-3. |
[7] |
W. Blaschke, Ein Mittelwertsatz und eine kennzeichnende Eigenschaft des logaritmischen Potentials,, \emph{Ber. Ver. S\, 68 (1916), 3. Google Scholar |
[8] |
T. Bhattacharya, E. DiBenedetto and J. J. Manfredi, Limits as $p\to \infty$ of $\Delta_p u_p = f$ and and related extremal problems,, in \emph{Some topics in nonlinear PDEs (Turin, 1568 (1989).
|
[9] |
T. Carleman, Sur un problème d'unicité pour les systemes d'equations aux derivées partielles à deux variables indépendentes,, \emph{Ark. for Mat.}, 26B (1939), 1. Google Scholar |
[10] |
M. G. Crandall, A visit with the $\infty$-Laplacian,, in \emph{Calculus of variations and nonlinear partial differential equations}, 1927 (2008), 75.
doi: 10.1007/978-3-540-75914-0_3. |
[11] |
R. Courant and D. Hilbert, Methods of Mathematical Physics (Volume II),, Interscience Publishers, (1962).
|
[12] |
M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 13 (2001), 123.
|
[13] |
V. Caselles, J. M. Morel and C. Sbert, An axiomatic approach to image interpolation,, \emph{IEEE Trans. Image Processsing}, 7 (1998), 376.
doi: 10.1109/83.661188. |
[14] |
R. Durrett, Brownian Motion and Martingales in Analysis,, Wadsworth Mathematics Series, (1984).
|
[15] |
C. F. Gauss, Algemeine Lehrsätze in Beziehung auf die im verkehrtem Verhältnisse des Quadrats der Entfernung wirkenden Anziehungs- und Abbstossungs-Kräfte,, (1840), (1840). Google Scholar |
[16] |
N. Garofalo and F. H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation,, \emph{Indiana Univ. Math. J.}, 35 (1986), 245.
doi: 10.1512/iumj.1986.35.35015. |
[17] |
S. Granlund and N. Marola, On a frequency function approach to the unique continuation principle,, \emph{Expo. Math.}, 30 (2012), 154.
doi: 10.1016/j.exmath.2012.01.006. |
[18] |
S. Granlund and N. Marola, On the problem of unique continuation for the $p$-Laplace equation,, \emph{Nonlinear Analysis}, 101 (2014), 89.
doi: 10.1016/j.na.2014.01.020. |
[19] |
F. Huckemann, On the "one circle" problem for harmonic functions,, \emph{J. London Math. Soc.}, 29 (1954), 491.
|
[20] |
W. Hansen and N. Nadirashvili, A converse to the mean value theorem for harmonic functions,, \emph{Acta Math.}, 171 (1993), 139.
doi: 10.1007/BF02392531. |
[21] |
W. Hansen and N. Nadirashvili, Littlewood's one circle problem,, \emph{J. London Math. Soc.}, 50 (1994), 349.
doi: 10.1016/j.exmath.2008.04.001. |
[22] |
R. Jensen, Uniqueness of lipschitz extensions: minimizing the sup norm of the gradient,, \emph{Arch. Rational Mech. Anal.}, 123 (1993), 51.
doi: 10.1007/BF00386368. |
[23] |
D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schröinger operators,, \emph{Ann. of Math.}, 12 (1985), 463.
doi: 10.2307/1971205. |
[24] |
P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear elliptic equation,, \emph{SIAM J. Math. Anal.}, 33 (2001), 699.
doi: 10.1137/S0036141000372179. |
[25] |
O. D. Kellogg, Converses of Gauss's theorem on the arithmetic mean,, \emph{Trans. Amer. Math. Soc.}, 36 (1934), 227.
doi: 10.2307/1989835. |
[26] |
B. Kawohl, J. J. Manfredi and M. Parviainen, Solutions of nonlinear PDEs in the sense of averages,, \emph{Journal des Math\'eatiques Pures et Apliqu\'ees}, 97 (2012), 173.
doi: 10.1016/j.matpur.2011.07.001. |
[27] |
C. Kenig, Carleman Estimates, uniform Sobolev Inequalities for second-order differential operators, and unique continuation theorems,, in \emph{Proceedings of the International Congress of Mathematics}, (1987), 948.
|
[28] |
C. Kenig, Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation,, in \emph{Harmonic Analysis and Partial differential equations} (El Escorial 1987). Lecture Notes in Math., 1384 (1989), 69.
doi: 10.1007/BFb0086794. |
[29] |
P. Koebe, Herleitung der partiellen Differentialgleichungen der Potentialfunktion aus deren Integraleigenschaft,, Sitzungsber. Berlin. Math. Gessellschaft, 5 (1906), 39. Google Scholar |
[30] |
J. E. Littlewood, Some Problems in Real and Complex Analysis,, Hath. Math. Monographs, (1968).
|
[31] |
F. H. Lin, A uniqueness theorem for parabolic equations,, \emph{Comm. on Pure and Appl. Math.}, 43 (1990), 127.
doi: 10.1002/cpa.3160430105. |
[32] |
P. Lindqvist, Notes on the $p$-Laplace equation,, Report, 102 (2006).
|
[33] |
E. Le Gruyer, On absolutely minimizing lipschitz extension and PDE $\Delta_{\infty}(u) = 0$,, \emph{Nonlinear Differential Equations and Applications}, 14 (2007), 29.
doi: 10.1007/s00030-006-4030-z. |
[34] |
J. G. Llorente, A note on unique continuation for solutions of the $\infty$-mean value property,, \emph{Ann. Acad. Scient. Fennicae}, 39 (2014), 473.
doi: 10.5186/aasfm.2014.3914. |
[35] |
E. Le Gruyer and J. C. Archer, Harmonious extensions,, \emph{Siam J. Math. Anal.}, 29 (1998), 279.
doi: 10.1137/S0036141095294067. |
[36] |
H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of $p$-harmonious functions,, \emph{Differential Integral Equations}, 3-4 (2014), 3.
|
[37] |
J. J. Manfredi, $p$-harmonic functions in the plane,, \emph{Proc. Amer. Math. Soc.}, 103 (1988), 473.
doi: 10.2307/2047164. |
[38] |
J. J. Manfredi, M. Parvianen and J. D. Rossi, An asymptotic mean value characterization for $p$-harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 138 (2010), 881.
doi: 10.1090/S0002-9939-09-10183-1. |
[39] |
J. J. Manfredi, M. Parvianen and J. D. Rossi, On the definition and properties of $p$-harmonious functions,, \emph{Ann. Sc. Norm. Super. Pisa Cl. Sc.}, 11 (2013), 215.
|
[40] |
I. Netuka, J. Veselý, Mean value properties and harmonic functions,, in \emph{Classical and modern potential theory and applications. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.}, 430 (1994), 359.
|
[41] |
I. Privaloff, Sur les fonctions harmoniques,, \emph{Rec. Math. Moscou (Mat. Sbornik)}, 32 (1925), 464. Google Scholar |
[42] |
Y. Peres, S. Sheffield, Tug-of-war with noise: a game-theoretic view of the $p$-Laplacian,, \emph{Duke Math. J.}, 145 (2008), 91.
doi: 10.1215/00127094-2008-048. |
[43] |
Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian,, \emph{Journal American Math. Soc.}, 22 (2009), 167.
doi: 10.1090/S0894-0347-08-00606-1. |
[44] |
B. S. Thomson, Symmetric Properties of Real Functions,, Marcel Dekker, (1994).
|
[45] |
V. Volterra, Alcune osservazioni sopra propietá atte ad individuare una funzione,, \emph{Rend. Acadd. d. Lincei Roma}, 18 (1909), 263. Google Scholar |
[46] |
Y. Yu, A remark on $C^2$-infinity harmonic functions,, \emph{Electronic J. of Differential Equations}, 122 (2006), 1.
|
[47] |
S. Zaremba, Contributions à la théorie d'une équation fonctionelle de la physique,, \emph{Rend. Circ. Mat. Palermo}, 19 (1905), 140. Google Scholar |
show all references
References:
[1] |
G. Aronsson, Extension of functions satisfying Lipschitz conditions,, \emph{Ark. Mat.}, 6 (1967), 551.
|
[2] |
G. Aronsson, On the partial differential equation $u_x^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} =0$,, \emph{Ark. Math.}, 7 (1968), 395.
|
[3] |
G. Aronsson, On certain singular solutions of the partial differential equation $u_x^2 u_{xx} +2u_x u_y u_{xy}+ u_y^2 u_{yy} =0$,, \emph{Manuscripta Mathematica}, 47 (1984), 133.
doi: 10.1007/BF01174590. |
[4] |
F. J. Jr. Almgrem, Dirichlet's problem for multiple valued functions and the regularity of mass minimizing integral currents, minimal submanifolds and geodesics,, in \emph{Proc. Japan -United States Sem.}, (1977), 1.
|
[5] |
S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory,, Springer-Verlag, (1991).
doi: 10.1007/b97238. |
[6] |
G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, \emph{Bull. of the American Mathematical Society (New series)}, 41 (2004), 439.
doi: 10.1090/S0273-0979-04-01035-3. |
[7] |
W. Blaschke, Ein Mittelwertsatz und eine kennzeichnende Eigenschaft des logaritmischen Potentials,, \emph{Ber. Ver. S\, 68 (1916), 3. Google Scholar |
[8] |
T. Bhattacharya, E. DiBenedetto and J. J. Manfredi, Limits as $p\to \infty$ of $\Delta_p u_p = f$ and and related extremal problems,, in \emph{Some topics in nonlinear PDEs (Turin, 1568 (1989).
|
[9] |
T. Carleman, Sur un problème d'unicité pour les systemes d'equations aux derivées partielles à deux variables indépendentes,, \emph{Ark. for Mat.}, 26B (1939), 1. Google Scholar |
[10] |
M. G. Crandall, A visit with the $\infty$-Laplacian,, in \emph{Calculus of variations and nonlinear partial differential equations}, 1927 (2008), 75.
doi: 10.1007/978-3-540-75914-0_3. |
[11] |
R. Courant and D. Hilbert, Methods of Mathematical Physics (Volume II),, Interscience Publishers, (1962).
|
[12] |
M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 13 (2001), 123.
|
[13] |
V. Caselles, J. M. Morel and C. Sbert, An axiomatic approach to image interpolation,, \emph{IEEE Trans. Image Processsing}, 7 (1998), 376.
doi: 10.1109/83.661188. |
[14] |
R. Durrett, Brownian Motion and Martingales in Analysis,, Wadsworth Mathematics Series, (1984).
|
[15] |
C. F. Gauss, Algemeine Lehrsätze in Beziehung auf die im verkehrtem Verhältnisse des Quadrats der Entfernung wirkenden Anziehungs- und Abbstossungs-Kräfte,, (1840), (1840). Google Scholar |
[16] |
N. Garofalo and F. H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation,, \emph{Indiana Univ. Math. J.}, 35 (1986), 245.
doi: 10.1512/iumj.1986.35.35015. |
[17] |
S. Granlund and N. Marola, On a frequency function approach to the unique continuation principle,, \emph{Expo. Math.}, 30 (2012), 154.
doi: 10.1016/j.exmath.2012.01.006. |
[18] |
S. Granlund and N. Marola, On the problem of unique continuation for the $p$-Laplace equation,, \emph{Nonlinear Analysis}, 101 (2014), 89.
doi: 10.1016/j.na.2014.01.020. |
[19] |
F. Huckemann, On the "one circle" problem for harmonic functions,, \emph{J. London Math. Soc.}, 29 (1954), 491.
|
[20] |
W. Hansen and N. Nadirashvili, A converse to the mean value theorem for harmonic functions,, \emph{Acta Math.}, 171 (1993), 139.
doi: 10.1007/BF02392531. |
[21] |
W. Hansen and N. Nadirashvili, Littlewood's one circle problem,, \emph{J. London Math. Soc.}, 50 (1994), 349.
doi: 10.1016/j.exmath.2008.04.001. |
[22] |
R. Jensen, Uniqueness of lipschitz extensions: minimizing the sup norm of the gradient,, \emph{Arch. Rational Mech. Anal.}, 123 (1993), 51.
doi: 10.1007/BF00386368. |
[23] |
D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schröinger operators,, \emph{Ann. of Math.}, 12 (1985), 463.
doi: 10.2307/1971205. |
[24] |
P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear elliptic equation,, \emph{SIAM J. Math. Anal.}, 33 (2001), 699.
doi: 10.1137/S0036141000372179. |
[25] |
O. D. Kellogg, Converses of Gauss's theorem on the arithmetic mean,, \emph{Trans. Amer. Math. Soc.}, 36 (1934), 227.
doi: 10.2307/1989835. |
[26] |
B. Kawohl, J. J. Manfredi and M. Parviainen, Solutions of nonlinear PDEs in the sense of averages,, \emph{Journal des Math\'eatiques Pures et Apliqu\'ees}, 97 (2012), 173.
doi: 10.1016/j.matpur.2011.07.001. |
[27] |
C. Kenig, Carleman Estimates, uniform Sobolev Inequalities for second-order differential operators, and unique continuation theorems,, in \emph{Proceedings of the International Congress of Mathematics}, (1987), 948.
|
[28] |
C. Kenig, Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation,, in \emph{Harmonic Analysis and Partial differential equations} (El Escorial 1987). Lecture Notes in Math., 1384 (1989), 69.
doi: 10.1007/BFb0086794. |
[29] |
P. Koebe, Herleitung der partiellen Differentialgleichungen der Potentialfunktion aus deren Integraleigenschaft,, Sitzungsber. Berlin. Math. Gessellschaft, 5 (1906), 39. Google Scholar |
[30] |
J. E. Littlewood, Some Problems in Real and Complex Analysis,, Hath. Math. Monographs, (1968).
|
[31] |
F. H. Lin, A uniqueness theorem for parabolic equations,, \emph{Comm. on Pure and Appl. Math.}, 43 (1990), 127.
doi: 10.1002/cpa.3160430105. |
[32] |
P. Lindqvist, Notes on the $p$-Laplace equation,, Report, 102 (2006).
|
[33] |
E. Le Gruyer, On absolutely minimizing lipschitz extension and PDE $\Delta_{\infty}(u) = 0$,, \emph{Nonlinear Differential Equations and Applications}, 14 (2007), 29.
doi: 10.1007/s00030-006-4030-z. |
[34] |
J. G. Llorente, A note on unique continuation for solutions of the $\infty$-mean value property,, \emph{Ann. Acad. Scient. Fennicae}, 39 (2014), 473.
doi: 10.5186/aasfm.2014.3914. |
[35] |
E. Le Gruyer and J. C. Archer, Harmonious extensions,, \emph{Siam J. Math. Anal.}, 29 (1998), 279.
doi: 10.1137/S0036141095294067. |
[36] |
H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of $p$-harmonious functions,, \emph{Differential Integral Equations}, 3-4 (2014), 3.
|
[37] |
J. J. Manfredi, $p$-harmonic functions in the plane,, \emph{Proc. Amer. Math. Soc.}, 103 (1988), 473.
doi: 10.2307/2047164. |
[38] |
J. J. Manfredi, M. Parvianen and J. D. Rossi, An asymptotic mean value characterization for $p$-harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 138 (2010), 881.
doi: 10.1090/S0002-9939-09-10183-1. |
[39] |
J. J. Manfredi, M. Parvianen and J. D. Rossi, On the definition and properties of $p$-harmonious functions,, \emph{Ann. Sc. Norm. Super. Pisa Cl. Sc.}, 11 (2013), 215.
|
[40] |
I. Netuka, J. Veselý, Mean value properties and harmonic functions,, in \emph{Classical and modern potential theory and applications. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.}, 430 (1994), 359.
|
[41] |
I. Privaloff, Sur les fonctions harmoniques,, \emph{Rec. Math. Moscou (Mat. Sbornik)}, 32 (1925), 464. Google Scholar |
[42] |
Y. Peres, S. Sheffield, Tug-of-war with noise: a game-theoretic view of the $p$-Laplacian,, \emph{Duke Math. J.}, 145 (2008), 91.
doi: 10.1215/00127094-2008-048. |
[43] |
Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian,, \emph{Journal American Math. Soc.}, 22 (2009), 167.
doi: 10.1090/S0894-0347-08-00606-1. |
[44] |
B. S. Thomson, Symmetric Properties of Real Functions,, Marcel Dekker, (1994).
|
[45] |
V. Volterra, Alcune osservazioni sopra propietá atte ad individuare una funzione,, \emph{Rend. Acadd. d. Lincei Roma}, 18 (1909), 263. Google Scholar |
[46] |
Y. Yu, A remark on $C^2$-infinity harmonic functions,, \emph{Electronic J. of Differential Equations}, 122 (2006), 1.
|
[47] |
S. Zaremba, Contributions à la théorie d'une équation fonctionelle de la physique,, \emph{Rend. Circ. Mat. Palermo}, 19 (1905), 140. Google Scholar |
[1] |
Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012 |
[2] |
Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27 |
[3] |
Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems & Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309 |
[4] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280 |
[5] |
Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623 |
[6] |
Peng Gao. Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2493-2510. doi: 10.3934/dcdsb.2018262 |
[7] |
Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021009 |
[8] |
Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007 |
[9] |
Guillaume James, Dmitry Pelinovsky. Breather continuation from infinity in nonlinear oscillator chains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1775-1799. doi: 10.3934/dcds.2012.32.1775 |
[10] |
Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control & Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165 |
[11] |
A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515 |
[12] |
Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047 |
[13] |
Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013 |
[14] |
Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619 |
[15] |
Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827 |
[16] |
Roberto Triggiani. Unique continuation of boundary over-determined Stokes and Oseen eigenproblems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 645-677. doi: 10.3934/dcdss.2009.2.645 |
[17] |
Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463 |
[18] |
Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075 |
[19] |
Fang Liu. An inhomogeneous evolution equation involving the normalized infinity Laplacian with a transport term. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2395-2421. doi: 10.3934/cpaa.2018114 |
[20] |
Ivana Gómez, Julio D. Rossi. Tug-of-war games and the infinity Laplacian with spatial dependence. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1959-1983. doi: 10.3934/cpaa.2013.12.1959 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]