-
Previous Article
Stability of degenerate parabolic Cauchy problems
- CPAA Home
- This Issue
-
Next Article
General existence of solutions to dynamic programming equations
Mean value properties and unique continuation
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain |
References:
[1] |
G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967), 551-561. |
[2] |
G. Aronsson, On the partial differential equation $u_x^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} =0$, Ark. Math., 7 (1968), 395-425. |
[3] |
G. Aronsson, On certain singular solutions of the partial differential equation $u_x^2 u_{xx} +2u_x u_y u_{xy}+ u_y^2 u_{yy} =0$, Manuscripta Mathematica, 47 (1984), 133-151.
doi: 10.1007/BF01174590. |
[4] |
F. J. Jr. Almgrem, Dirichlet's problem for multiple valued functions and the regularity of mass minimizing integral currents, minimal submanifolds and geodesics, in Proc. Japan -United States Sem., Tokyo (1977), 1-6. |
[5] |
S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer-Verlag, 1991.
doi: 10.1007/b97238. |
[6] |
G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. of the American Mathematical Society (New series), 41 (2004), 439-505.
doi: 10.1090/S0273-0979-04-01035-3. |
[7] |
W. Blaschke, Ein Mittelwertsatz und eine kennzeichnende Eigenschaft des logaritmischen Potentials, Ber. Ver. Sächs. Akad. Wiss. Leipzig, 68 (1916), 3-7. |
[8] |
T. Bhattacharya, E. DiBenedetto and J. J. Manfredi, Limits as $p\to \infty$ of $\Delta_p u_p = f$ and and related extremal problems, in Some topics in nonlinear PDEs (Turin, 1989). Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 1568, 1991. |
[9] |
T. Carleman, Sur un problème d'unicité pour les systemes d'equations aux derivées partielles à deux variables indépendentes, Ark. for Mat., 26B (1939), 1-9. |
[10] |
M. G. Crandall, A visit with the $\infty$-Laplacian, in Calculus of variations and nonlinear partial differential equations, Lecture Notes in Mathematics, 1927 (2008), 75-122.
doi: 10.1007/978-3-540-75914-0_3. |
[11] |
R. Courant and D. Hilbert, Methods of Mathematical Physics (Volume II), Interscience Publishers, 1962. |
[12] |
M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations, 13 (2001), 123-139. |
[13] |
V. Caselles, J. M. Morel and C. Sbert, An axiomatic approach to image interpolation, IEEE Trans. Image Processsing, 7 (1998), 376-386.
doi: 10.1109/83.661188. |
[14] |
R. Durrett, Brownian Motion and Martingales in Analysis, Wadsworth Mathematics Series, 1984. |
[15] |
C. F. Gauss, Algemeine Lehrsätze in Beziehung auf die im verkehrtem Verhältnisse des Quadrats der Entfernung wirkenden Anziehungs- und Abbstossungs-Kräfte, (1840), Werke, 5, Band, Göttingen, 1877. |
[16] |
N. Garofalo and F. H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268.
doi: 10.1512/iumj.1986.35.35015. |
[17] |
S. Granlund and N. Marola, On a frequency function approach to the unique continuation principle, Expo. Math., 30 (2012), 154-167.
doi: 10.1016/j.exmath.2012.01.006. |
[18] |
S. Granlund and N. Marola, On the problem of unique continuation for the $p$-Laplace equation, Nonlinear Analysis, 101 (2014), 89-97.
doi: 10.1016/j.na.2014.01.020. |
[19] |
F. Huckemann, On the "one circle" problem for harmonic functions, J. London Math. Soc., 29 (1954), 491-497. |
[20] |
W. Hansen and N. Nadirashvili, A converse to the mean value theorem for harmonic functions, Acta Math., 171 (1993), 139-163.
doi: 10.1007/BF02392531. |
[21] |
W. Hansen and N. Nadirashvili, Littlewood's one circle problem, J. London Math. Soc., 50 (1994), 349-360.
doi: 10.1016/j.exmath.2008.04.001. |
[22] |
R. Jensen, Uniqueness of lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.
doi: 10.1007/BF00386368. |
[23] |
D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schröinger operators, Ann. of Math., 12 (1985), 463-494.
doi: 10.2307/1971205. |
[24] |
P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear elliptic equation, SIAM J. Math. Anal., 33 (2001), 699-717.
doi: 10.1137/S0036141000372179. |
[25] |
O. D. Kellogg, Converses of Gauss's theorem on the arithmetic mean, Trans. Amer. Math. Soc., 36 (1934), 227-242.
doi: 10.2307/1989835. |
[26] |
B. Kawohl, J. J. Manfredi and M. Parviainen, Solutions of nonlinear PDEs in the sense of averages, Journal des Mathéatiques Pures et Apliquées, 97 (2012) , 173-188.
doi: 10.1016/j.matpur.2011.07.001. |
[27] |
C. Kenig, Carleman Estimates, uniform Sobolev Inequalities for second-order differential operators, and unique continuation theorems, in Proceedings of the International Congress of Mathematics, (Berkeley 1986). Vol. 1,2. Amer. Math. Soc. (1987), 948-960. |
[28] |
C. Kenig, Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation, in Harmonic Analysis and Partial differential equations (El Escorial 1987). Lecture Notes in Math., 1384 (1989), 69-90.
doi: 10.1007/BFb0086794. |
[29] |
P. Koebe, Herleitung der partiellen Differentialgleichungen der Potentialfunktion aus deren Integraleigenschaft, Sitzungsber. Berlin. Math. Gessellschaft, 5 (1906), 39-42. |
[30] |
J. E. Littlewood, Some Problems in Real and Complex Analysis, Hath. Math. Monographs, 1968. |
[31] |
F. H. Lin, A uniqueness theorem for parabolic equations, Comm. on Pure and Appl. Math., 43 (1990), 127-136.
doi: 10.1002/cpa.3160430105. |
[32] |
P. Lindqvist, Notes on the $p$-Laplace equation, Report, University of Jyväkylä Department of Mathematics and Statistics, 102 (2006). |
[33] |
E. Le Gruyer, On absolutely minimizing lipschitz extension and PDE $\Delta_{\infty}(u) = 0$, Nonlinear Differential Equations and Applications, 14 (2007), 29-55.
doi: 10.1007/s00030-006-4030-z. |
[34] |
J. G. Llorente, A note on unique continuation for solutions of the $\infty$-mean value property, Ann. Acad. Scient. Fennicae, 39 (2014), 473-483.
doi: 10.5186/aasfm.2014.3914. |
[35] |
E. Le Gruyer and J. C. Archer, Harmonious extensions, Siam J. Math. Anal., 29 (1998), 279-292.
doi: 10.1137/S0036141095294067. |
[36] |
H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of $p$-harmonious functions, Differential Integral Equations, 3-4 (2014), 201-216. |
[37] |
J. J. Manfredi, $p$-harmonic functions in the plane, Proc. Amer. Math. Soc., 103 (1988), 473-479.
doi: 10.2307/2047164. |
[38] |
J. J. Manfredi, M. Parvianen and J. D. Rossi, An asymptotic mean value characterization for $p$-harmonic functions, Proc. Amer. Math. Soc., 138 (2010), 881-889.
doi: 10.1090/S0002-9939-09-10183-1. |
[39] |
J. J. Manfredi, M. Parvianen and J. D. Rossi, On the definition and properties of $p$-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sc., 11 (2013), 215-241. |
[40] |
I. Netuka, J. Veselý, Mean value properties and harmonic functions, in Classical and modern potential theory and applications. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 430, Kluwer (1994), 359-398. |
[41] |
I. Privaloff, Sur les fonctions harmoniques, Rec. Math. Moscou (Mat. Sbornik), 32 (1925), 464-471. |
[42] |
Y. Peres, S. Sheffield, Tug-of-war with noise: a game-theoretic view of the $p$-Laplacian, Duke Math. J., 145 (2008), 91-120.
doi: 10.1215/00127094-2008-048. |
[43] |
Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, Journal American Math. Soc., 22 (2009), 167-210.
doi: 10.1090/S0894-0347-08-00606-1. |
[44] |
B. S. Thomson, Symmetric Properties of Real Functions, Marcel Dekker, 1994. |
[45] |
V. Volterra, Alcune osservazioni sopra propietá atte ad individuare una funzione, Rend. Acadd. d. Lincei Roma, 18 (1909), 263-266. |
[46] |
Y. Yu, A remark on $C^2$-infinity harmonic functions, Electronic J. of Differential Equations, 122 (2006), 1-4. |
[47] |
S. Zaremba, Contributions à la théorie d'une équation fonctionelle de la physique, Rend. Circ. Mat. Palermo, 19 (1905), 140-150. |
show all references
References:
[1] |
G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967), 551-561. |
[2] |
G. Aronsson, On the partial differential equation $u_x^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} =0$, Ark. Math., 7 (1968), 395-425. |
[3] |
G. Aronsson, On certain singular solutions of the partial differential equation $u_x^2 u_{xx} +2u_x u_y u_{xy}+ u_y^2 u_{yy} =0$, Manuscripta Mathematica, 47 (1984), 133-151.
doi: 10.1007/BF01174590. |
[4] |
F. J. Jr. Almgrem, Dirichlet's problem for multiple valued functions and the regularity of mass minimizing integral currents, minimal submanifolds and geodesics, in Proc. Japan -United States Sem., Tokyo (1977), 1-6. |
[5] |
S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer-Verlag, 1991.
doi: 10.1007/b97238. |
[6] |
G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. of the American Mathematical Society (New series), 41 (2004), 439-505.
doi: 10.1090/S0273-0979-04-01035-3. |
[7] |
W. Blaschke, Ein Mittelwertsatz und eine kennzeichnende Eigenschaft des logaritmischen Potentials, Ber. Ver. Sächs. Akad. Wiss. Leipzig, 68 (1916), 3-7. |
[8] |
T. Bhattacharya, E. DiBenedetto and J. J. Manfredi, Limits as $p\to \infty$ of $\Delta_p u_p = f$ and and related extremal problems, in Some topics in nonlinear PDEs (Turin, 1989). Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 1568, 1991. |
[9] |
T. Carleman, Sur un problème d'unicité pour les systemes d'equations aux derivées partielles à deux variables indépendentes, Ark. for Mat., 26B (1939), 1-9. |
[10] |
M. G. Crandall, A visit with the $\infty$-Laplacian, in Calculus of variations and nonlinear partial differential equations, Lecture Notes in Mathematics, 1927 (2008), 75-122.
doi: 10.1007/978-3-540-75914-0_3. |
[11] |
R. Courant and D. Hilbert, Methods of Mathematical Physics (Volume II), Interscience Publishers, 1962. |
[12] |
M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations, 13 (2001), 123-139. |
[13] |
V. Caselles, J. M. Morel and C. Sbert, An axiomatic approach to image interpolation, IEEE Trans. Image Processsing, 7 (1998), 376-386.
doi: 10.1109/83.661188. |
[14] |
R. Durrett, Brownian Motion and Martingales in Analysis, Wadsworth Mathematics Series, 1984. |
[15] |
C. F. Gauss, Algemeine Lehrsätze in Beziehung auf die im verkehrtem Verhältnisse des Quadrats der Entfernung wirkenden Anziehungs- und Abbstossungs-Kräfte, (1840), Werke, 5, Band, Göttingen, 1877. |
[16] |
N. Garofalo and F. H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268.
doi: 10.1512/iumj.1986.35.35015. |
[17] |
S. Granlund and N. Marola, On a frequency function approach to the unique continuation principle, Expo. Math., 30 (2012), 154-167.
doi: 10.1016/j.exmath.2012.01.006. |
[18] |
S. Granlund and N. Marola, On the problem of unique continuation for the $p$-Laplace equation, Nonlinear Analysis, 101 (2014), 89-97.
doi: 10.1016/j.na.2014.01.020. |
[19] |
F. Huckemann, On the "one circle" problem for harmonic functions, J. London Math. Soc., 29 (1954), 491-497. |
[20] |
W. Hansen and N. Nadirashvili, A converse to the mean value theorem for harmonic functions, Acta Math., 171 (1993), 139-163.
doi: 10.1007/BF02392531. |
[21] |
W. Hansen and N. Nadirashvili, Littlewood's one circle problem, J. London Math. Soc., 50 (1994), 349-360.
doi: 10.1016/j.exmath.2008.04.001. |
[22] |
R. Jensen, Uniqueness of lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.
doi: 10.1007/BF00386368. |
[23] |
D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schröinger operators, Ann. of Math., 12 (1985), 463-494.
doi: 10.2307/1971205. |
[24] |
P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear elliptic equation, SIAM J. Math. Anal., 33 (2001), 699-717.
doi: 10.1137/S0036141000372179. |
[25] |
O. D. Kellogg, Converses of Gauss's theorem on the arithmetic mean, Trans. Amer. Math. Soc., 36 (1934), 227-242.
doi: 10.2307/1989835. |
[26] |
B. Kawohl, J. J. Manfredi and M. Parviainen, Solutions of nonlinear PDEs in the sense of averages, Journal des Mathéatiques Pures et Apliquées, 97 (2012) , 173-188.
doi: 10.1016/j.matpur.2011.07.001. |
[27] |
C. Kenig, Carleman Estimates, uniform Sobolev Inequalities for second-order differential operators, and unique continuation theorems, in Proceedings of the International Congress of Mathematics, (Berkeley 1986). Vol. 1,2. Amer. Math. Soc. (1987), 948-960. |
[28] |
C. Kenig, Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation, in Harmonic Analysis and Partial differential equations (El Escorial 1987). Lecture Notes in Math., 1384 (1989), 69-90.
doi: 10.1007/BFb0086794. |
[29] |
P. Koebe, Herleitung der partiellen Differentialgleichungen der Potentialfunktion aus deren Integraleigenschaft, Sitzungsber. Berlin. Math. Gessellschaft, 5 (1906), 39-42. |
[30] |
J. E. Littlewood, Some Problems in Real and Complex Analysis, Hath. Math. Monographs, 1968. |
[31] |
F. H. Lin, A uniqueness theorem for parabolic equations, Comm. on Pure and Appl. Math., 43 (1990), 127-136.
doi: 10.1002/cpa.3160430105. |
[32] |
P. Lindqvist, Notes on the $p$-Laplace equation, Report, University of Jyväkylä Department of Mathematics and Statistics, 102 (2006). |
[33] |
E. Le Gruyer, On absolutely minimizing lipschitz extension and PDE $\Delta_{\infty}(u) = 0$, Nonlinear Differential Equations and Applications, 14 (2007), 29-55.
doi: 10.1007/s00030-006-4030-z. |
[34] |
J. G. Llorente, A note on unique continuation for solutions of the $\infty$-mean value property, Ann. Acad. Scient. Fennicae, 39 (2014), 473-483.
doi: 10.5186/aasfm.2014.3914. |
[35] |
E. Le Gruyer and J. C. Archer, Harmonious extensions, Siam J. Math. Anal., 29 (1998), 279-292.
doi: 10.1137/S0036141095294067. |
[36] |
H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of $p$-harmonious functions, Differential Integral Equations, 3-4 (2014), 201-216. |
[37] |
J. J. Manfredi, $p$-harmonic functions in the plane, Proc. Amer. Math. Soc., 103 (1988), 473-479.
doi: 10.2307/2047164. |
[38] |
J. J. Manfredi, M. Parvianen and J. D. Rossi, An asymptotic mean value characterization for $p$-harmonic functions, Proc. Amer. Math. Soc., 138 (2010), 881-889.
doi: 10.1090/S0002-9939-09-10183-1. |
[39] |
J. J. Manfredi, M. Parvianen and J. D. Rossi, On the definition and properties of $p$-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sc., 11 (2013), 215-241. |
[40] |
I. Netuka, J. Veselý, Mean value properties and harmonic functions, in Classical and modern potential theory and applications. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 430, Kluwer (1994), 359-398. |
[41] |
I. Privaloff, Sur les fonctions harmoniques, Rec. Math. Moscou (Mat. Sbornik), 32 (1925), 464-471. |
[42] |
Y. Peres, S. Sheffield, Tug-of-war with noise: a game-theoretic view of the $p$-Laplacian, Duke Math. J., 145 (2008), 91-120.
doi: 10.1215/00127094-2008-048. |
[43] |
Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, Journal American Math. Soc., 22 (2009), 167-210.
doi: 10.1090/S0894-0347-08-00606-1. |
[44] |
B. S. Thomson, Symmetric Properties of Real Functions, Marcel Dekker, 1994. |
[45] |
V. Volterra, Alcune osservazioni sopra propietá atte ad individuare una funzione, Rend. Acadd. d. Lincei Roma, 18 (1909), 263-266. |
[46] |
Y. Yu, A remark on $C^2$-infinity harmonic functions, Electronic J. of Differential Equations, 122 (2006), 1-4. |
[47] |
S. Zaremba, Contributions à la théorie d'une équation fonctionelle de la physique, Rend. Circ. Mat. Palermo, 19 (1905), 140-150. |
[1] |
Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control and Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27 |
[2] |
Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012 |
[3] |
Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems and Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309 |
[4] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure and Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280 |
[5] |
Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623 |
[6] |
Taige Wang, Dihong Xu. A quantitative strong unique continuation property of a diffusive SIS model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1599-1614. doi: 10.3934/dcdss.2022024 |
[7] |
Peng Gao. Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2493-2510. doi: 10.3934/dcdsb.2018262 |
[8] |
Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007 |
[9] |
Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems and Imaging, 2021, 15 (4) : 641-681. doi: 10.3934/ipi.2021009 |
[10] |
Guillaume James, Dmitry Pelinovsky. Breather continuation from infinity in nonlinear oscillator chains. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1775-1799. doi: 10.3934/dcds.2012.32.1775 |
[11] |
Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control and Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165 |
[12] |
A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515 |
[13] |
Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047 |
[14] |
Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013 |
[15] |
Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems and Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619 |
[16] |
Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827 |
[17] |
Roberto Triggiani. Unique continuation of boundary over-determined Stokes and Oseen eigenproblems. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 645-677. doi: 10.3934/dcdss.2009.2.645 |
[18] |
Fang Liu. An inhomogeneous evolution equation involving the normalized infinity Laplacian with a transport term. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2395-2421. doi: 10.3934/cpaa.2018114 |
[19] |
Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463 |
[20] |
Ivana Gómez, Julio D. Rossi. Tug-of-war games and the infinity Laplacian with spatial dependence. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1959-1983. doi: 10.3934/cpaa.2013.12.1959 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]