September  2015, 14(5): 1865-1884. doi: 10.3934/cpaa.2015.14.1865

Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces

1. 

School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China

2. 

Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640

3. 

College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007

Received  September 2014 Revised  February 2015 Published  June 2015

In this paper, we consider the global well-posedness of the incompressible magnetohydrodynamic equations with initial data $(u_0,b_0)$ in the critical Besov space $\dot{B}_{2,1}^{1/2}(\mathbb{R}^3)\times \dot{B}_{2,1}^{1/2}(\mathbb{R}^3)$. Compared with [30], making full use of the algebraical structure of the equations, we relax the smallness condition in the third component of the initial velocity field and magnetic field. More precisely, we prove that there exist two positive constants $\varepsilon_0$ and $C_0$ such that if \begin{eqnarray} (\|u_0^h\|_{\dot{B}_{2,1}^{1/2}} +\|b_0^h\|_{\dot{B}_{2,1}^{1/2}}) \exp\{C_0(\frac{1}{\mu}+\frac{1}{\nu})^3 (\|u_0^3\|_{\dot{B}_{2,1}^{1/2}} +\|b_0^3\|_{\dot{B}_{2,1}^{1/2}})^2\} \le \varepsilon_0\mu\nu, \end{eqnarray} then the 3-D incompressible magnetohydrodynamic system has a unique global solution $(u,b)\in C([0,+\infty);\dot{B}_{2,1}^{1/2})\cap L^1((0,+\infty);\dot{B}_{2,1}^{5/2})\times C([0,+\infty);\dot{B}_{2,1}^{1/2})\cap L^1((0,+\infty);\dot{B}_{2,1}^{5/2}).$ Finally, we analyze the long behavior of the solution and get some decay estimates which imply that for any $t>0$ the solution $(u(t),b(t))\in C^{\infty}(\mathbb{R}^3)\times C^{\infty}(\mathbb{R}^3)$.
Citation: Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865
References:
[1]

H. Abidi and M. Paicu, Existence globale pour un fluide inhomogéne,, \emph{Ann. Inst. Fourier (Grenoble)}, 57 (2007), 883. Google Scholar

[2]

H. Abidi and M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces,, \emph{Proc. Roy. Soc. Edinburgh Sect. A.}, 138 (2008), 447. doi: 10.1017/S0308210506001181. Google Scholar

[3]

J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires,, \emph{Ann. Sci. \'Ecole Norm. Sup.}, 14 (1981), 209. Google Scholar

[4]

R. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD,, \emph{Comm. Math. Phys.}, 184 (1997), 443. doi: 10.1007/s002200050067. Google Scholar

[5]

M. Cannone, Ondelettes Paraproduits et Navier-Stokes,, Diderot editeur, (1995). Google Scholar

[6]

C. Cao, D. Regmi and J. Wu, The 2-D MHD equations with horizontal dissipation and horizontal magnetic diffusion,, \emph{J. Diff. Eqns.}, 254 (2013), 2661. doi: 10.1016/j.jde.2013.01.002. Google Scholar

[7]

C. Cao and J. Wu, Global regularity for the 2-D MHD equations with mixed partial dissipation and magnetic diffusion,, \emph{Adv. Math.}, 226 (2011), 1803. doi: 10.1016/j.aim.2010.08.017. Google Scholar

[8]

J. Y. Chemin, Remarques sur l'existence globale pour le système de Navier-Stokes incompressible,, \emph{SIAM Journal on Mathematical Analysis}, 23 (1992), 20. doi: 10.1137/0523002. Google Scholar

[9]

J. Y. Chemin, Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel,, \emph{J. Anal. Math.}, 77 (1999), 27. doi: 10.1007/BF02791256. Google Scholar

[10]

J. Y. Chemin and I. Gallagher, On the global wellposedness of the 3-D Navier-Stokes equations with large initial data,, \emph{Ann. Sci. \'Ecole Norm. Sup.}, 39 (2006), 679. doi: 10.1016/j.ansens.2006.07.002. Google Scholar

[11]

Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces,, \emph{J. Diff. Eqns.}, 252 (2012), 2698. doi: 10.1016/j.jde.2011.09.035. Google Scholar

[12]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3-D viscous magneto-hydrodynamics equations,, \emph{Comm. Math. Phys.}, 284 (2008), 919. doi: 10.1007/s00220-008-0545-y. Google Scholar

[13]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique,, \emph{Arch. Ration. Mech. Anal.}, 46 (1972), 241. Google Scholar

[14]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I,, \emph{Arch. Ration. Mech. Anal.}, 16 (1964), 269. Google Scholar

[15]

C. He and X. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations,, \emph{J. Funct. Anal.}, 227 (2005), 113. doi: 10.1016/j.jfa.2005.06.009. Google Scholar

[16]

C. He and X. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, \emph{J. Diff. Eqns.}, 213 (2005), 235. doi: 10.1016/j.jde.2004.07.002. Google Scholar

[17]

D. Iftimie, The 3-D Navier-Stokes equations seen as a perturbation of the 2-D Navier-Stokes equations,, \emph{Bull. Soc. Math. France}, 127 (1999), 473. Google Scholar

[18]

D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces,, \emph{Rev. Mat. Iberoamericana}, 15 (1999), 1. doi: 10.4171/RMI/248. Google Scholar

[19]

D. Iftimie and G. R. Raugel, Some results on the Navier-Stokes equations in thin 3-D domains,, \emph{J. Diff. Eqns.}, 169 (2001), 281. doi: 10.1006/jdeq.2000.3900. Google Scholar

[20]

T. Kato, Strong $L^q$ solutions of the Navier-Stokes equations in $\mathbbR^n$ with applications to weak solutions,, \emph{Mathematische Zeitschrift}, 187 (1984), 471. doi: 10.1007/BF01174182. Google Scholar

[21]

I. Kukavica, W. Rusin and M. Ziane, A class of large $BMO^{-1}$ non-oscillatory data for the Navier-Stokes equations,, \emph{J. Math. Fluid Mech.}, 16 (2014), 293. doi: 10.1007/s00021-013-0160-3. Google Scholar

[22]

I. Kukavica, W. Rusin and M. Ziane, A class of solutions of the Navier-Stokes equations with large data,, \emph{J. Diff Eqns.}, 255 (2013), 1492. doi: 10.1016/j.jde.2013.05.009. Google Scholar

[23]

I. Kukavica and M. Ziane, Regularity of the Navier-Stokes equation in a thin periodic domain with large data,, \emph{Discrete Contin. Dyn. Syst.}, 16 (2006), 67. doi: 10.3934/dcds.2006.16.67. Google Scholar

[24]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, \emph{Adv. Math.}, 157 (2001), 22. doi: 10.1006/aima.2000.1937. Google Scholar

[25]

H. Kozono, Weak and classical solutions of the two-dimensional magnetohydrodynamic equations,, \emph{Tohoku Mathematical Journal.}, 41 (1989), 471. doi: 10.2748/tmj/1178227774. Google Scholar

[26]

Z. Lei and Y. Zhou, BKM's criterion and global weak solutions for magnetohydrody-namics with zero viscosity equations,, \emph{Discrete Contin. Dyn. Syst-A}, 25 (2009), 575. doi: 10.3934/dcds.2009.25.575. Google Scholar

[27]

PG. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Chapman $&$ Hall/CRC: London, (2002). doi: 10.1201/9781420035674. Google Scholar

[28]

F. Lin and P. Zhang, Global small solutions to MHD type system (I): 3-D case,, \emph{Comm. Pure Appl. Math.}, (). Google Scholar

[29]

F. Lin, L. Xu and P. Zhang, Global small solutions to 2-D incompressible MHD system,, arXiv:1302.5877v2 [math.AP]., (). Google Scholar

[30]

C. Miao and B. Yuan, On the well-posedness of the Cauchy problem for an MHD system in Besov spaces,, \emph{Math. Meth. Appl. Sci.}, 32 (2009), 53. doi: 10.1002/mma.1026. Google Scholar

[31]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces,, \emph{Comm. Math. Phys.}, 307 (2011), 713. doi: 10.1007/s00220-011-1350-6. Google Scholar

[32]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system,, \emph{J. Funct. Anal.}, 262 (2012), 3556. doi: 10.1016/j.jfa.2012.01.022. Google Scholar

[33]

J. Peetre, New Thoughts on Besov Spaces,, Duke Univers. Math. Ser., (1976). Google Scholar

[34]

F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbbR^3$,, \emph{Annales lInstitut Henri Poincar{\'e}}, 13 (1996), 319. Google Scholar

[35]

G. Raugel and G. R. Sell, Équations de Navier-Stokes dans des domaines minces en dimension trois: régularité globale,, \emph{C. R. Acad. Sci. Paris S{\'e}r. I Math.}, 309 (1989), 299. Google Scholar

[36]

X. Ren, J. Wu, Z. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magentic diffusion,, \emph{J. Funct. Anal.}, 267 (2014), 503. doi: 10.1016/j.jfa.2014.04.020. Google Scholar

[37]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 635. doi: 10.1002/cpa.3160360506. Google Scholar

[38]

J. Wu, Y. Wu and X. Xu, Global small solution to the 2-D MHD system with a velocity damping term,, arXiv:1311.6185v1 [math.AP]., (). Google Scholar

[39]

T. Zhang, An elementary proof of the global existence and uniqueness theorem to 2-D incompressible non-resistive MHD system,, arXiv:1404.5681v1 [math.AP]., (). Google Scholar

[40]

Y. Zhou, Remarks on regularities for the 3-D MHD equations,, \emph{Discrete Contin. Dyn. Syst.}, 12 (2005), 881. doi: 10.3934/dcds.2005.12.881. Google Scholar

show all references

References:
[1]

H. Abidi and M. Paicu, Existence globale pour un fluide inhomogéne,, \emph{Ann. Inst. Fourier (Grenoble)}, 57 (2007), 883. Google Scholar

[2]

H. Abidi and M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces,, \emph{Proc. Roy. Soc. Edinburgh Sect. A.}, 138 (2008), 447. doi: 10.1017/S0308210506001181. Google Scholar

[3]

J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires,, \emph{Ann. Sci. \'Ecole Norm. Sup.}, 14 (1981), 209. Google Scholar

[4]

R. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD,, \emph{Comm. Math. Phys.}, 184 (1997), 443. doi: 10.1007/s002200050067. Google Scholar

[5]

M. Cannone, Ondelettes Paraproduits et Navier-Stokes,, Diderot editeur, (1995). Google Scholar

[6]

C. Cao, D. Regmi and J. Wu, The 2-D MHD equations with horizontal dissipation and horizontal magnetic diffusion,, \emph{J. Diff. Eqns.}, 254 (2013), 2661. doi: 10.1016/j.jde.2013.01.002. Google Scholar

[7]

C. Cao and J. Wu, Global regularity for the 2-D MHD equations with mixed partial dissipation and magnetic diffusion,, \emph{Adv. Math.}, 226 (2011), 1803. doi: 10.1016/j.aim.2010.08.017. Google Scholar

[8]

J. Y. Chemin, Remarques sur l'existence globale pour le système de Navier-Stokes incompressible,, \emph{SIAM Journal on Mathematical Analysis}, 23 (1992), 20. doi: 10.1137/0523002. Google Scholar

[9]

J. Y. Chemin, Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel,, \emph{J. Anal. Math.}, 77 (1999), 27. doi: 10.1007/BF02791256. Google Scholar

[10]

J. Y. Chemin and I. Gallagher, On the global wellposedness of the 3-D Navier-Stokes equations with large initial data,, \emph{Ann. Sci. \'Ecole Norm. Sup.}, 39 (2006), 679. doi: 10.1016/j.ansens.2006.07.002. Google Scholar

[11]

Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces,, \emph{J. Diff. Eqns.}, 252 (2012), 2698. doi: 10.1016/j.jde.2011.09.035. Google Scholar

[12]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3-D viscous magneto-hydrodynamics equations,, \emph{Comm. Math. Phys.}, 284 (2008), 919. doi: 10.1007/s00220-008-0545-y. Google Scholar

[13]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique,, \emph{Arch. Ration. Mech. Anal.}, 46 (1972), 241. Google Scholar

[14]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I,, \emph{Arch. Ration. Mech. Anal.}, 16 (1964), 269. Google Scholar

[15]

C. He and X. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations,, \emph{J. Funct. Anal.}, 227 (2005), 113. doi: 10.1016/j.jfa.2005.06.009. Google Scholar

[16]

C. He and X. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, \emph{J. Diff. Eqns.}, 213 (2005), 235. doi: 10.1016/j.jde.2004.07.002. Google Scholar

[17]

D. Iftimie, The 3-D Navier-Stokes equations seen as a perturbation of the 2-D Navier-Stokes equations,, \emph{Bull. Soc. Math. France}, 127 (1999), 473. Google Scholar

[18]

D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces,, \emph{Rev. Mat. Iberoamericana}, 15 (1999), 1. doi: 10.4171/RMI/248. Google Scholar

[19]

D. Iftimie and G. R. Raugel, Some results on the Navier-Stokes equations in thin 3-D domains,, \emph{J. Diff. Eqns.}, 169 (2001), 281. doi: 10.1006/jdeq.2000.3900. Google Scholar

[20]

T. Kato, Strong $L^q$ solutions of the Navier-Stokes equations in $\mathbbR^n$ with applications to weak solutions,, \emph{Mathematische Zeitschrift}, 187 (1984), 471. doi: 10.1007/BF01174182. Google Scholar

[21]

I. Kukavica, W. Rusin and M. Ziane, A class of large $BMO^{-1}$ non-oscillatory data for the Navier-Stokes equations,, \emph{J. Math. Fluid Mech.}, 16 (2014), 293. doi: 10.1007/s00021-013-0160-3. Google Scholar

[22]

I. Kukavica, W. Rusin and M. Ziane, A class of solutions of the Navier-Stokes equations with large data,, \emph{J. Diff Eqns.}, 255 (2013), 1492. doi: 10.1016/j.jde.2013.05.009. Google Scholar

[23]

I. Kukavica and M. Ziane, Regularity of the Navier-Stokes equation in a thin periodic domain with large data,, \emph{Discrete Contin. Dyn. Syst.}, 16 (2006), 67. doi: 10.3934/dcds.2006.16.67. Google Scholar

[24]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, \emph{Adv. Math.}, 157 (2001), 22. doi: 10.1006/aima.2000.1937. Google Scholar

[25]

H. Kozono, Weak and classical solutions of the two-dimensional magnetohydrodynamic equations,, \emph{Tohoku Mathematical Journal.}, 41 (1989), 471. doi: 10.2748/tmj/1178227774. Google Scholar

[26]

Z. Lei and Y. Zhou, BKM's criterion and global weak solutions for magnetohydrody-namics with zero viscosity equations,, \emph{Discrete Contin. Dyn. Syst-A}, 25 (2009), 575. doi: 10.3934/dcds.2009.25.575. Google Scholar

[27]

PG. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Chapman $&$ Hall/CRC: London, (2002). doi: 10.1201/9781420035674. Google Scholar

[28]

F. Lin and P. Zhang, Global small solutions to MHD type system (I): 3-D case,, \emph{Comm. Pure Appl. Math.}, (). Google Scholar

[29]

F. Lin, L. Xu and P. Zhang, Global small solutions to 2-D incompressible MHD system,, arXiv:1302.5877v2 [math.AP]., (). Google Scholar

[30]

C. Miao and B. Yuan, On the well-posedness of the Cauchy problem for an MHD system in Besov spaces,, \emph{Math. Meth. Appl. Sci.}, 32 (2009), 53. doi: 10.1002/mma.1026. Google Scholar

[31]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces,, \emph{Comm. Math. Phys.}, 307 (2011), 713. doi: 10.1007/s00220-011-1350-6. Google Scholar

[32]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system,, \emph{J. Funct. Anal.}, 262 (2012), 3556. doi: 10.1016/j.jfa.2012.01.022. Google Scholar

[33]

J. Peetre, New Thoughts on Besov Spaces,, Duke Univers. Math. Ser., (1976). Google Scholar

[34]

F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbbR^3$,, \emph{Annales lInstitut Henri Poincar{\'e}}, 13 (1996), 319. Google Scholar

[35]

G. Raugel and G. R. Sell, Équations de Navier-Stokes dans des domaines minces en dimension trois: régularité globale,, \emph{C. R. Acad. Sci. Paris S{\'e}r. I Math.}, 309 (1989), 299. Google Scholar

[36]

X. Ren, J. Wu, Z. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magentic diffusion,, \emph{J. Funct. Anal.}, 267 (2014), 503. doi: 10.1016/j.jfa.2014.04.020. Google Scholar

[37]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 635. doi: 10.1002/cpa.3160360506. Google Scholar

[38]

J. Wu, Y. Wu and X. Xu, Global small solution to the 2-D MHD system with a velocity damping term,, arXiv:1311.6185v1 [math.AP]., (). Google Scholar

[39]

T. Zhang, An elementary proof of the global existence and uniqueness theorem to 2-D incompressible non-resistive MHD system,, arXiv:1404.5681v1 [math.AP]., (). Google Scholar

[40]

Y. Zhou, Remarks on regularities for the 3-D MHD equations,, \emph{Discrete Contin. Dyn. Syst.}, 12 (2005), 881. doi: 10.3934/dcds.2005.12.881. Google Scholar

[1]

Radjesvarane Alexandre, Mouhamad Elsafadi. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non Maxwellian molecules. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 1-11. doi: 10.3934/dcds.2009.24.1

[2]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[3]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[4]

Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087

[5]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[6]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

[7]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[8]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[9]

Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455

[10]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[11]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[12]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[13]

Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903

[14]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[15]

Can Li, Weihua Deng, Lijing Zhao. Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1989-2015. doi: 10.3934/dcdsb.2019026

[16]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[17]

Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863

[18]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[19]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[20]

Elissar Nasreddine. Well-posedness for a model of individual clustering. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2647-2668. doi: 10.3934/dcdsb.2013.18.2647

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]