September  2015, 14(5): 1885-1902. doi: 10.3934/cpaa.2015.14.1885

Maximal functions of multipliers on compact manifolds without boundary

1. 

Korea Institute for Advanced Study School of Mathematics, Hoegiro 85, Dongdaemun-gu, Seoul 130-722, South Korea

Received  October 2014 Revised  March 2015 Published  June 2015

Let $P$ be a self-adjoint positive elliptic (-pseudo) differential operator on a smooth compact manifold $M$ without boundary. In this paper, we obtain a refined $L^p$ bound of the maximal function of the multiplier operators associated to $P$ satisfying the Hörmander-Mikhlin condition.
Citation: Woocheol Choi. Maximal functions of multipliers on compact manifolds without boundary. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1885-1902. doi: 10.3934/cpaa.2015.14.1885
References:
[1]

N. Burq, P. Gérard and N. Tzvetkov, Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math., 159 (2005), 187-223. doi: 10.1007/s00222-004-0388-x.

[2]

N. Burq, P. Gérard and N. Tzvetkov, The Cauchy problem for the nonlinear Schrödinger equation on compact manifolds, Phase Space Analysis of Partial Differential Equations. Vol. I, 21-52, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2004.

[3]

N. Burq, P. Gérard and N. Tzvetkov, Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds, Duke Math. J., 138 (2007), 445-486. doi: 10.1215/S0012-7094-07-13834-1.

[4]

S. Y. A Chang, M. Wilson and T. Wolff, Some weighted norm inequalities concerning the Schrödinger operator, Comment. Math. Helv., 60 (1985), 217-246. doi: 10.1007/BF02567411.

[5]

W. Choi, Maximal functions for multipliers on stratified groups,, \emph{Math. Nachr.}, ().  doi: 10.1002/mana.201300305.

[6]

M. Christ, $L^p$ bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc., 328 (1991), 73-81. doi: 10.2307/2001877.

[7]

M. Christ, Lectures on Singular Integral Operators, CBMS Regional Conference Series in Mathematics, 77, 1990.

[8]

M. Christ, L. Grafakos, P. Honzik and A. Seeger, Maximal functions associated with Fourier multipliers of Mikhlin-Hörmander type, Math. Z., 249 (2005), 223-240.

[9]

C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math., 93 (1971), 107-115.

[10]

G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, 28 Princeton University Press.; University of Tokyo Press, 1982.

[11]

L. Grafakos, P. Honzik and A. Seeger, On maximal functions for Mikhlin-Hörmander multipliers, Adv in Math., 204 (2006), 363-378. doi: 10.1016/j.aim.2005.05.010.

[12]

P. Honzík, Maximal functions of multilinear multipliers, Math. Res. Lett., 16 (2009), 995-1006. doi: 10.4310/MRL.2009.v16.n6.a7.

[13]

P. Honzik, Maximal Marcinkiewicz multipliers, Ark. Mat., 52 (2014), 135-147. doi: 10.1007/s11512-013-0189-9.

[14]

A. Hassell and M. Tacy, Semiclassical $L^p$ estimates of quasimodes on curved hypersurfaces, J. Geom. Anal., 22 (2012), 74-89. doi: 10.1007/s12220-010-9191-7.

[15]

L. Hörmander, Estimates for translation invariant operators in $L^p$ spaces, Acta Math., 104 (1960), 93-139.

[16]

G. Mauceri and S. Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana, 6 (1990), 141-154. doi: 10.4171/RMI/100.

[17]

A. Seeger and C. D. Sogge, On the boundedness of functions of (pseudo-) differential operators on compact manifolds, Duke Math. J., 59 (1989), 709-736. doi: 10.1215/S0012-7094-89-05932-2.

[18]

C. D. Sogge, On the convergence of Riesz means on compact manifolds, Ann. of Math., 126 (1987), 439-447. doi: 10.2307/1971356.

[19]

C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, 105. Cambridge University Press, Cambridge, 1993. doi: 10.1017/CBO9780511530029.

[20]

M. Tacy, Semiclassical $L^p$ estimates of quasimodes on submanifolds, Comm. Partial Differential Equations, 35 (2010), 1538-1562. doi: 10.1080/03605301003611006.

[21]

M. Taylor, Pseudo-differential Operators, Princeton Univ. Press, Princeton N.J., 1981.

show all references

References:
[1]

N. Burq, P. Gérard and N. Tzvetkov, Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math., 159 (2005), 187-223. doi: 10.1007/s00222-004-0388-x.

[2]

N. Burq, P. Gérard and N. Tzvetkov, The Cauchy problem for the nonlinear Schrödinger equation on compact manifolds, Phase Space Analysis of Partial Differential Equations. Vol. I, 21-52, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2004.

[3]

N. Burq, P. Gérard and N. Tzvetkov, Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds, Duke Math. J., 138 (2007), 445-486. doi: 10.1215/S0012-7094-07-13834-1.

[4]

S. Y. A Chang, M. Wilson and T. Wolff, Some weighted norm inequalities concerning the Schrödinger operator, Comment. Math. Helv., 60 (1985), 217-246. doi: 10.1007/BF02567411.

[5]

W. Choi, Maximal functions for multipliers on stratified groups,, \emph{Math. Nachr.}, ().  doi: 10.1002/mana.201300305.

[6]

M. Christ, $L^p$ bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc., 328 (1991), 73-81. doi: 10.2307/2001877.

[7]

M. Christ, Lectures on Singular Integral Operators, CBMS Regional Conference Series in Mathematics, 77, 1990.

[8]

M. Christ, L. Grafakos, P. Honzik and A. Seeger, Maximal functions associated with Fourier multipliers of Mikhlin-Hörmander type, Math. Z., 249 (2005), 223-240.

[9]

C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math., 93 (1971), 107-115.

[10]

G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, 28 Princeton University Press.; University of Tokyo Press, 1982.

[11]

L. Grafakos, P. Honzik and A. Seeger, On maximal functions for Mikhlin-Hörmander multipliers, Adv in Math., 204 (2006), 363-378. doi: 10.1016/j.aim.2005.05.010.

[12]

P. Honzík, Maximal functions of multilinear multipliers, Math. Res. Lett., 16 (2009), 995-1006. doi: 10.4310/MRL.2009.v16.n6.a7.

[13]

P. Honzik, Maximal Marcinkiewicz multipliers, Ark. Mat., 52 (2014), 135-147. doi: 10.1007/s11512-013-0189-9.

[14]

A. Hassell and M. Tacy, Semiclassical $L^p$ estimates of quasimodes on curved hypersurfaces, J. Geom. Anal., 22 (2012), 74-89. doi: 10.1007/s12220-010-9191-7.

[15]

L. Hörmander, Estimates for translation invariant operators in $L^p$ spaces, Acta Math., 104 (1960), 93-139.

[16]

G. Mauceri and S. Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana, 6 (1990), 141-154. doi: 10.4171/RMI/100.

[17]

A. Seeger and C. D. Sogge, On the boundedness of functions of (pseudo-) differential operators on compact manifolds, Duke Math. J., 59 (1989), 709-736. doi: 10.1215/S0012-7094-89-05932-2.

[18]

C. D. Sogge, On the convergence of Riesz means on compact manifolds, Ann. of Math., 126 (1987), 439-447. doi: 10.2307/1971356.

[19]

C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, 105. Cambridge University Press, Cambridge, 1993. doi: 10.1017/CBO9780511530029.

[20]

M. Tacy, Semiclassical $L^p$ estimates of quasimodes on submanifolds, Comm. Partial Differential Equations, 35 (2010), 1538-1562. doi: 10.1080/03605301003611006.

[21]

M. Taylor, Pseudo-differential Operators, Princeton Univ. Press, Princeton N.J., 1981.

[1]

María José Beltrán, José Bonet, Carmen Fernández. Classical operators on the Hörmander algebras. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 637-652. doi: 10.3934/dcds.2015.35.637

[2]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations and Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[3]

Valerii Los, Vladimir A. Mikhailets, Aleksandr A. Murach. An isomorphism theorem for parabolic problems in Hörmander spaces and its applications. Communications on Pure and Applied Analysis, 2017, 16 (1) : 69-98. doi: 10.3934/cpaa.2017003

[4]

Aylin Aydoğdu, Sean T. McQuade, Nastassia Pouradier Duteil. Opinion Dynamics on a General Compact Riemannian Manifold. Networks and Heterogeneous Media, 2017, 12 (3) : 489-523. doi: 10.3934/nhm.2017021

[5]

Andrea Bonfiglioli, Ermanno Lanconelli. Lie groups related to Hörmander operators and Kolmogorov-Fokker-Planck equations. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1587-1614. doi: 10.3934/cpaa.2012.11.1587

[6]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

[7]

Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure and Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015

[8]

Matti Lassas, Teemu Saksala, Hanming Zhou. Reconstruction of a compact manifold from the scattering data of internal sources. Inverse Problems and Imaging, 2018, 12 (4) : 993-1031. doi: 10.3934/ipi.2018042

[9]

Shengbing Deng, Zied Khemiri, Fethi Mahmoudi. On spike solutions for a singularly perturbed problem in a compact riemannian manifold. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2063-2084. doi: 10.3934/cpaa.2018098

[10]

Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799

[11]

Martin Pinsonnault. Maximal compact tori in the Hamiltonian group of 4-dimensional symplectic manifolds. Journal of Modern Dynamics, 2008, 2 (3) : 431-455. doi: 10.3934/jmd.2008.2.431

[12]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[13]

Jaeyoung Byeon, Sangdon Jin. The Hénon equation with a critical exponent under the Neumann boundary condition. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4353-4390. doi: 10.3934/dcds.2018190

[14]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973

[15]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

[16]

Jirui Ma, Jinyan Fan. On convergence properties of the modified trust region method under Hölderian error bound condition. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021222

[17]

Karla L. Cortez, Javier F. Rosenblueth. Normality and uniqueness of Lagrange multipliers. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3169-3188. doi: 10.3934/dcds.2018138

[18]

Richard Sharp, Anastasios Stylianou. Statistics of multipliers for hyperbolic rational maps. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1225-1241. doi: 10.3934/dcds.2021153

[19]

E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics and Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010

[20]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]