September  2015, 14(5): 1903-1913. doi: 10.3934/cpaa.2015.14.1903

Low regularity well-posedness for Gross-Neveu equations

1. 

Department of Mathematics, Chung-Ang University, Seoul 156-756, South Korea

Received  October 2014 Revised  February 2015 Published  June 2015

We address the problem of local and global well-posedness of Gross-Neveu (GN) equations for low regularity initial data. Combined with the standard machinery of $X_R$, $Y_R$ and $X^{s,b}$ spaces, we obtain local-wellposedness of (GN) for initial data $u, v \in H^s$ with $s\geq 0$. To prove the existence of global solution for the critical space $L^2$, we show non concentration of $L^2$ norm.
Citation: Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903
References:
[1]

T. Candy, Global existence for $L^2$ critical nonlinear Dirac equation in one dimension,, \emph{Adv. Differential Equations}, 16 (2011), 643.

[2]

V. Delgado, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension,, \emph{Proc. Amer. Math. Soc.}, 69 (1978), 289.

[3]

D. J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories,, \emph{Phys. Rev. D}, 10 (1974), 3235.

[4]

W. E. Thirring, A soluble relativistic field theory,, \emph{Ann.Phys.}, 3 (1958), 91.

[5]

H. Huh, Global strong solution to the Thirring model in critical space,, \emph{J. Math. Anal. Appl.}, 381 (2011), 513. doi: 10.1016/j.jmaa.2011.02.042.

[6]

H. Huh, Global solutions to Gross-Neveu equations,, \emph{Lett. Math. Phys.}, 103 (2013), 927. doi: 10.1007/s11005-013-0622-9.

[7]

S. Machihara, K. Nakanishi and K. Tsugawa, Well-posedness for nonlinear Dirac equations in one dimension,, \emph{Kyoto J. Math.}, 50 (2010), 403. doi: 10.1215/0023608X-2009-018.

[8]

S. Selberg and A. Tefahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension,, \emph{Differential and Integral Equations}, 23 (2010), 265.

[9]

P. D'Ancona, D. Foschi and S. Selberg, Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system,, \emph{Journal of EMS}, 9 (2007), 877. doi: 10.4171/JEMS/100.

[10]

Y. Zhang, Global strong solution to a nonlinear Dirac type equation in one dimension,, \emph{Nonlinear Analysis}, 80 (2013), 150. doi: 10.1016/j.na.2012.10.008.

show all references

References:
[1]

T. Candy, Global existence for $L^2$ critical nonlinear Dirac equation in one dimension,, \emph{Adv. Differential Equations}, 16 (2011), 643.

[2]

V. Delgado, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension,, \emph{Proc. Amer. Math. Soc.}, 69 (1978), 289.

[3]

D. J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories,, \emph{Phys. Rev. D}, 10 (1974), 3235.

[4]

W. E. Thirring, A soluble relativistic field theory,, \emph{Ann.Phys.}, 3 (1958), 91.

[5]

H. Huh, Global strong solution to the Thirring model in critical space,, \emph{J. Math. Anal. Appl.}, 381 (2011), 513. doi: 10.1016/j.jmaa.2011.02.042.

[6]

H. Huh, Global solutions to Gross-Neveu equations,, \emph{Lett. Math. Phys.}, 103 (2013), 927. doi: 10.1007/s11005-013-0622-9.

[7]

S. Machihara, K. Nakanishi and K. Tsugawa, Well-posedness for nonlinear Dirac equations in one dimension,, \emph{Kyoto J. Math.}, 50 (2010), 403. doi: 10.1215/0023608X-2009-018.

[8]

S. Selberg and A. Tefahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension,, \emph{Differential and Integral Equations}, 23 (2010), 265.

[9]

P. D'Ancona, D. Foschi and S. Selberg, Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system,, \emph{Journal of EMS}, 9 (2007), 877. doi: 10.4171/JEMS/100.

[10]

Y. Zhang, Global strong solution to a nonlinear Dirac type equation in one dimension,, \emph{Nonlinear Analysis}, 80 (2013), 150. doi: 10.1016/j.na.2012.10.008.

[1]

Sigmund Selberg. Global existence in the critical space for the Thirring and Gross-Neveu models coupled with the electromagnetic field. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2555-2569. doi: 10.3934/dcds.2018107

[2]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[3]

P. Blue, J. Colliander. Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS. Communications on Pure & Applied Analysis, 2006, 5 (4) : 691-708. doi: 10.3934/cpaa.2006.5.691

[4]

Myeongju Chae, Soonsik Kwon. Global well-posedness for the $L^2$-critical Hartree equation on $\mathbb{R}^n$, $n\ge 3$. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1725-1743. doi: 10.3934/cpaa.2009.8.1725

[5]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[6]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389

[7]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[8]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[9]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[10]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[11]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[12]

Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081

[13]

Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088

[14]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[15]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[16]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[17]

E. Compaan, N. Tzirakis. Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $ \mathbb{R}^+ $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3867-3895. doi: 10.3934/dcds.2019156

[18]

Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061

[19]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[20]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]