September  2015, 14(5): 1929-1940. doi: 10.3934/cpaa.2015.14.1929

Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part

1. 

College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China

Received  November 2014 Revised  January 2015 Published  June 2015

Based on a generalized linking theorem for the strongly indefinite functionals, we study the existence of homoclinic orbits of the second order self-adjoint discrete Hamiltonian system \begin{eqnarray} \triangle [p(n)\triangle u(n-1)]-L(n)u(n)+\nabla W(n, u(n))=0, \end{eqnarray} where $p(n), L(n)$ and $W(n, x)$ are $N$-periodic on $n$, and $0$ lies in a gap of the spectrum $\sigma(\mathcal{A})$ of the operator $\mathcal{A}$, which is bounded self-adjoint in $l^2(\mathbb{Z}, \mathbb{R}^{\mathcal{N}})$ defined by $(\mathcal{A}u)(n)=\triangle [p(n)\triangle u(n-1)]-L(n)u(n)$. Under weak superquadratic conditions, we establish the existence of homoclinic orbits.
Citation: Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929
References:
[1]

R. P. Agarwal, Difference Equations and Inequalities: Theory, Method and Applications,, second edition, (2000).   Google Scholar

[2]

C. D. Ahlbrandt and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fraction and Riccati Equations,, Kluwer Texts in the Mathematical Sciences, (1996).  doi: 10.1007/978-1-4757-2467-7.  Google Scholar

[3]

C. J. Batkam, Homoclinic orbits of first-order superquadratic Hamiltonian systems,, \emph{Discrete Contin. Dyn. Syst.}, 34 (2014), 3353.  doi: 10.3934/dcds.2014.34.3353.  Google Scholar

[4]

J. Cruz-Sampedro, Boundary values of the resolvent of Schrödinger Hamiltonian with potentials of order zero,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 1061.  doi: 10.3934/dcds.2013.33.1061.  Google Scholar

[5]

X. Q. Deng and G. Cheng, Homoclinic orbits for second order discrete Hamiltonian systems with potential changing sign,, \emph{Acta Appl. Math.}, 103 (2008), 301.  doi: 10.1007/s10440-008-9237-z.  Google Scholar

[6]

D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators,, Oxford Mathematical Monographs, (1987).   Google Scholar

[7]

M. Izydorek and J. Janczewska, Homoclinic solutions for a class of second order Hamiltonian systems,, \emph{J. Differential Equations}, 219 (2005), 375.  doi: 10.1016/j.jde.2005.06.029.  Google Scholar

[8]

G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part,, \emph{Commun. Contemp. Math.}, 4 (2002), 763.  doi: 10.1142/S0219199702000853.  Google Scholar

[9]

X. Y. Lin and X. H. Tang, Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 373 (2011), 59.  doi: 10.1016/j.jmaa.2010.06.008.  Google Scholar

[10]

X. Y. Lin and X. H. Tang, Homoclinic orbits for discrete Hamiltonian systems with subquadratic potential,, \emph{Advances in Difference Equations}, 154 (2013).   Google Scholar

[11]

M. Ma and Z. M. Guo, Homoclinic orbits and subharmonics for nonlinear second order difference equations,, \emph{Nonlinear Anal.}, 67 (2007), 1737.  doi: 10.1016/j.na.2006.08.014.  Google Scholar

[12]

W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems,, \emph{Differential Integral Equations}, 5 (1992), 1115.   Google Scholar

[13]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems,, \emph{Proc, 114 (1990), 33.  doi: 10.1017/S0308210500024240.  Google Scholar

[14]

P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems,, \emph{Math. Z.}, 206 (1991), 473.  doi: 10.1007/BF02571356.  Google Scholar

[15]

J. Sun, J. Chu and Z. Feng, Homoclinic orbits for first order periodic Hamiltonian systems with spectrum zero,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 3807.  doi: 10.3934/dcds.2013.33.3807.  Google Scholar

[16]

X. H. Tang and J. Chen, Infinitely many homoclinic orbits for a class of discrete Hamiltonian systems,, \emph{Advances in Difference Equations}, 242 (2013).  doi: 10.1186/1687-1847-2013-242.  Google Scholar

[17]

X. H. Tang and X. Y. Lin, Existence and multiplicity of homoclinic solutions for second-order discrete Hamiltonian systems with subquadratic potential,, \emph{J. Differ. Equ. Appl.}, 17 (2011), 1617.  doi: 10.1080/10236191003730514.  Google Scholar

[18]

X. H. Tang and X. Y. Lin, Infinitely many homoclinic orbits for discrete Hamiltonian systems with subquadratic potential,, \emph{J. Differ. Equ. Appl.}, 19 (2013), 796.  doi: 10.1080/10236198.2012.691168.  Google Scholar

[19]

X. H. Tang, Non-Nehari manifold method for asymptotically linear Schrödinger equation,, \emph{J. Aust. Math. Soc.}, 98 (2015), 104.  doi: 10.1017/S144678871400041X.  Google Scholar

[20]

J. S. Yu, H. Shi and Z. M. Guo, Homoclinic orbits for nonlinear difference equations containing both advance and retardation,, \emph{J. Math. Anal. Appl.}, 352 (2009), 799.  doi: 10.1016/j.jmaa.2008.11.043.  Google Scholar

[21]

Q. Q. Zhang, Homoclinic orbits for a class of discrete periodic Hamiltonian systems,, \emph{Proc. Amer. Math. Soc.}, ().   Google Scholar

[22]

V. Coti Zelati, I. Ekeland and E. Sere, A variational approach to homoclinic orbits in Hamiltonian systems,, \emph{Math. Ann.}, 288 (1990), 133.  doi: 10.1007/BF01444526.  Google Scholar

[23]

V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second second order Hamiltonian systems possessing superquadratic potentials,, \emph{J. Amer. Math. Soc.}, 4 (1991), 693.  doi: 10.2307/2939286.  Google Scholar

[24]

Z. Zhou and J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems,, \emph{J. Differential Equations}, 249 (2010), 1199.  doi: 10.1016/j.jde.2010.03.010.  Google Scholar

[25]

Z. Zhou and J. S. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity,, \emph{Acta Mathematica Sinica}, 29 (2013), 1809.  doi: 10.1007/s10114-013-0736-0.  Google Scholar

[26]

Z. Zhou, J. S. Yu and Y. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity,, \emph{Science China, 54 (2011), 83.  doi: 10.1007/s11425-010-4101-9.  Google Scholar

show all references

References:
[1]

R. P. Agarwal, Difference Equations and Inequalities: Theory, Method and Applications,, second edition, (2000).   Google Scholar

[2]

C. D. Ahlbrandt and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fraction and Riccati Equations,, Kluwer Texts in the Mathematical Sciences, (1996).  doi: 10.1007/978-1-4757-2467-7.  Google Scholar

[3]

C. J. Batkam, Homoclinic orbits of first-order superquadratic Hamiltonian systems,, \emph{Discrete Contin. Dyn. Syst.}, 34 (2014), 3353.  doi: 10.3934/dcds.2014.34.3353.  Google Scholar

[4]

J. Cruz-Sampedro, Boundary values of the resolvent of Schrödinger Hamiltonian with potentials of order zero,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 1061.  doi: 10.3934/dcds.2013.33.1061.  Google Scholar

[5]

X. Q. Deng and G. Cheng, Homoclinic orbits for second order discrete Hamiltonian systems with potential changing sign,, \emph{Acta Appl. Math.}, 103 (2008), 301.  doi: 10.1007/s10440-008-9237-z.  Google Scholar

[6]

D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators,, Oxford Mathematical Monographs, (1987).   Google Scholar

[7]

M. Izydorek and J. Janczewska, Homoclinic solutions for a class of second order Hamiltonian systems,, \emph{J. Differential Equations}, 219 (2005), 375.  doi: 10.1016/j.jde.2005.06.029.  Google Scholar

[8]

G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part,, \emph{Commun. Contemp. Math.}, 4 (2002), 763.  doi: 10.1142/S0219199702000853.  Google Scholar

[9]

X. Y. Lin and X. H. Tang, Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 373 (2011), 59.  doi: 10.1016/j.jmaa.2010.06.008.  Google Scholar

[10]

X. Y. Lin and X. H. Tang, Homoclinic orbits for discrete Hamiltonian systems with subquadratic potential,, \emph{Advances in Difference Equations}, 154 (2013).   Google Scholar

[11]

M. Ma and Z. M. Guo, Homoclinic orbits and subharmonics for nonlinear second order difference equations,, \emph{Nonlinear Anal.}, 67 (2007), 1737.  doi: 10.1016/j.na.2006.08.014.  Google Scholar

[12]

W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems,, \emph{Differential Integral Equations}, 5 (1992), 1115.   Google Scholar

[13]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems,, \emph{Proc, 114 (1990), 33.  doi: 10.1017/S0308210500024240.  Google Scholar

[14]

P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems,, \emph{Math. Z.}, 206 (1991), 473.  doi: 10.1007/BF02571356.  Google Scholar

[15]

J. Sun, J. Chu and Z. Feng, Homoclinic orbits for first order periodic Hamiltonian systems with spectrum zero,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 3807.  doi: 10.3934/dcds.2013.33.3807.  Google Scholar

[16]

X. H. Tang and J. Chen, Infinitely many homoclinic orbits for a class of discrete Hamiltonian systems,, \emph{Advances in Difference Equations}, 242 (2013).  doi: 10.1186/1687-1847-2013-242.  Google Scholar

[17]

X. H. Tang and X. Y. Lin, Existence and multiplicity of homoclinic solutions for second-order discrete Hamiltonian systems with subquadratic potential,, \emph{J. Differ. Equ. Appl.}, 17 (2011), 1617.  doi: 10.1080/10236191003730514.  Google Scholar

[18]

X. H. Tang and X. Y. Lin, Infinitely many homoclinic orbits for discrete Hamiltonian systems with subquadratic potential,, \emph{J. Differ. Equ. Appl.}, 19 (2013), 796.  doi: 10.1080/10236198.2012.691168.  Google Scholar

[19]

X. H. Tang, Non-Nehari manifold method for asymptotically linear Schrödinger equation,, \emph{J. Aust. Math. Soc.}, 98 (2015), 104.  doi: 10.1017/S144678871400041X.  Google Scholar

[20]

J. S. Yu, H. Shi and Z. M. Guo, Homoclinic orbits for nonlinear difference equations containing both advance and retardation,, \emph{J. Math. Anal. Appl.}, 352 (2009), 799.  doi: 10.1016/j.jmaa.2008.11.043.  Google Scholar

[21]

Q. Q. Zhang, Homoclinic orbits for a class of discrete periodic Hamiltonian systems,, \emph{Proc. Amer. Math. Soc.}, ().   Google Scholar

[22]

V. Coti Zelati, I. Ekeland and E. Sere, A variational approach to homoclinic orbits in Hamiltonian systems,, \emph{Math. Ann.}, 288 (1990), 133.  doi: 10.1007/BF01444526.  Google Scholar

[23]

V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second second order Hamiltonian systems possessing superquadratic potentials,, \emph{J. Amer. Math. Soc.}, 4 (1991), 693.  doi: 10.2307/2939286.  Google Scholar

[24]

Z. Zhou and J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems,, \emph{J. Differential Equations}, 249 (2010), 1199.  doi: 10.1016/j.jde.2010.03.010.  Google Scholar

[25]

Z. Zhou and J. S. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity,, \emph{Acta Mathematica Sinica}, 29 (2013), 1809.  doi: 10.1007/s10114-013-0736-0.  Google Scholar

[26]

Z. Zhou, J. S. Yu and Y. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity,, \emph{Science China, 54 (2011), 83.  doi: 10.1007/s11425-010-4101-9.  Google Scholar

[1]

Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293

[2]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

[3]

Xing Huang, Wujun Lv. Stochastic functional Hamiltonian system with singular coefficients. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1257-1273. doi: 10.3934/cpaa.2020060

[4]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions. Communications on Pure & Applied Analysis, 2019, 18 (1) : 425-434. doi: 10.3934/cpaa.2019021

[5]

Xiaoping Wang. Ground state homoclinic solutions for a second-order Hamiltonian system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2163-2175. doi: 10.3934/dcdss.2019139

[6]

Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107

[7]

Zuowei Cai, Jianhua Huang, Liu Yang, Lihong Huang. Periodicity and stabilization control of the delayed Filippov system with perturbation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019235

[8]

Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485

[9]

W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351

[10]

S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493

[11]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128

[12]

B. Buffoni, F. Giannoni. Brake periodic orbits of prescribed Hamiltonian for indefinite Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 217-222. doi: 10.3934/dcds.1995.1.217

[13]

Sergey Gonchenko, Ivan Ovsyannikov. Homoclinic tangencies to resonant saddles and discrete Lorenz attractors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 273-288. doi: 10.3934/dcdss.2017013

[14]

Jacobo Pejsachowicz, Robert Skiba. Topology and homoclinic trajectories of discrete dynamical systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1077-1094. doi: 10.3934/dcdss.2013.6.1077

[15]

Dean Crnković, Ronan Egan, Andrea Švob. Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020032

[16]

Addolorata Salvatore. Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 778-787. doi: 10.3934/proc.2003.2003.778

[17]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[18]

Jun Wang, Junxiang Xu, Fubao Zhang. Homoclinic orbits for a class of Hamiltonian systems with superquadratic or asymptotically quadratic potentials. Communications on Pure & Applied Analysis, 2011, 10 (1) : 269-286. doi: 10.3934/cpaa.2011.10.269

[19]

Cyril Joel Batkam. Homoclinic orbits of first-order superquadratic Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3353-3369. doi: 10.3934/dcds.2014.34.3353

[20]

Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]