September  2015, 14(5): 1929-1940. doi: 10.3934/cpaa.2015.14.1929

Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part

1. 

College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China

Received  November 2014 Revised  January 2015 Published  June 2015

Based on a generalized linking theorem for the strongly indefinite functionals, we study the existence of homoclinic orbits of the second order self-adjoint discrete Hamiltonian system \begin{eqnarray} \triangle [p(n)\triangle u(n-1)]-L(n)u(n)+\nabla W(n, u(n))=0, \end{eqnarray} where $p(n), L(n)$ and $W(n, x)$ are $N$-periodic on $n$, and $0$ lies in a gap of the spectrum $\sigma(\mathcal{A})$ of the operator $\mathcal{A}$, which is bounded self-adjoint in $l^2(\mathbb{Z}, \mathbb{R}^{\mathcal{N}})$ defined by $(\mathcal{A}u)(n)=\triangle [p(n)\triangle u(n-1)]-L(n)u(n)$. Under weak superquadratic conditions, we establish the existence of homoclinic orbits.
Citation: Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929
References:
[1]

R. P. Agarwal, Difference Equations and Inequalities: Theory, Method and Applications,, second edition, (2000).   Google Scholar

[2]

C. D. Ahlbrandt and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fraction and Riccati Equations,, Kluwer Texts in the Mathematical Sciences, (1996).  doi: 10.1007/978-1-4757-2467-7.  Google Scholar

[3]

C. J. Batkam, Homoclinic orbits of first-order superquadratic Hamiltonian systems,, \emph{Discrete Contin. Dyn. Syst.}, 34 (2014), 3353.  doi: 10.3934/dcds.2014.34.3353.  Google Scholar

[4]

J. Cruz-Sampedro, Boundary values of the resolvent of Schrödinger Hamiltonian with potentials of order zero,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 1061.  doi: 10.3934/dcds.2013.33.1061.  Google Scholar

[5]

X. Q. Deng and G. Cheng, Homoclinic orbits for second order discrete Hamiltonian systems with potential changing sign,, \emph{Acta Appl. Math.}, 103 (2008), 301.  doi: 10.1007/s10440-008-9237-z.  Google Scholar

[6]

D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators,, Oxford Mathematical Monographs, (1987).   Google Scholar

[7]

M. Izydorek and J. Janczewska, Homoclinic solutions for a class of second order Hamiltonian systems,, \emph{J. Differential Equations}, 219 (2005), 375.  doi: 10.1016/j.jde.2005.06.029.  Google Scholar

[8]

G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part,, \emph{Commun. Contemp. Math.}, 4 (2002), 763.  doi: 10.1142/S0219199702000853.  Google Scholar

[9]

X. Y. Lin and X. H. Tang, Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 373 (2011), 59.  doi: 10.1016/j.jmaa.2010.06.008.  Google Scholar

[10]

X. Y. Lin and X. H. Tang, Homoclinic orbits for discrete Hamiltonian systems with subquadratic potential,, \emph{Advances in Difference Equations}, 154 (2013).   Google Scholar

[11]

M. Ma and Z. M. Guo, Homoclinic orbits and subharmonics for nonlinear second order difference equations,, \emph{Nonlinear Anal.}, 67 (2007), 1737.  doi: 10.1016/j.na.2006.08.014.  Google Scholar

[12]

W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems,, \emph{Differential Integral Equations}, 5 (1992), 1115.   Google Scholar

[13]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems,, \emph{Proc, 114 (1990), 33.  doi: 10.1017/S0308210500024240.  Google Scholar

[14]

P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems,, \emph{Math. Z.}, 206 (1991), 473.  doi: 10.1007/BF02571356.  Google Scholar

[15]

J. Sun, J. Chu and Z. Feng, Homoclinic orbits for first order periodic Hamiltonian systems with spectrum zero,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 3807.  doi: 10.3934/dcds.2013.33.3807.  Google Scholar

[16]

X. H. Tang and J. Chen, Infinitely many homoclinic orbits for a class of discrete Hamiltonian systems,, \emph{Advances in Difference Equations}, 242 (2013).  doi: 10.1186/1687-1847-2013-242.  Google Scholar

[17]

X. H. Tang and X. Y. Lin, Existence and multiplicity of homoclinic solutions for second-order discrete Hamiltonian systems with subquadratic potential,, \emph{J. Differ. Equ. Appl.}, 17 (2011), 1617.  doi: 10.1080/10236191003730514.  Google Scholar

[18]

X. H. Tang and X. Y. Lin, Infinitely many homoclinic orbits for discrete Hamiltonian systems with subquadratic potential,, \emph{J. Differ. Equ. Appl.}, 19 (2013), 796.  doi: 10.1080/10236198.2012.691168.  Google Scholar

[19]

X. H. Tang, Non-Nehari manifold method for asymptotically linear Schrödinger equation,, \emph{J. Aust. Math. Soc.}, 98 (2015), 104.  doi: 10.1017/S144678871400041X.  Google Scholar

[20]

J. S. Yu, H. Shi and Z. M. Guo, Homoclinic orbits for nonlinear difference equations containing both advance and retardation,, \emph{J. Math. Anal. Appl.}, 352 (2009), 799.  doi: 10.1016/j.jmaa.2008.11.043.  Google Scholar

[21]

Q. Q. Zhang, Homoclinic orbits for a class of discrete periodic Hamiltonian systems,, \emph{Proc. Amer. Math. Soc.}, ().   Google Scholar

[22]

V. Coti Zelati, I. Ekeland and E. Sere, A variational approach to homoclinic orbits in Hamiltonian systems,, \emph{Math. Ann.}, 288 (1990), 133.  doi: 10.1007/BF01444526.  Google Scholar

[23]

V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second second order Hamiltonian systems possessing superquadratic potentials,, \emph{J. Amer. Math. Soc.}, 4 (1991), 693.  doi: 10.2307/2939286.  Google Scholar

[24]

Z. Zhou and J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems,, \emph{J. Differential Equations}, 249 (2010), 1199.  doi: 10.1016/j.jde.2010.03.010.  Google Scholar

[25]

Z. Zhou and J. S. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity,, \emph{Acta Mathematica Sinica}, 29 (2013), 1809.  doi: 10.1007/s10114-013-0736-0.  Google Scholar

[26]

Z. Zhou, J. S. Yu and Y. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity,, \emph{Science China, 54 (2011), 83.  doi: 10.1007/s11425-010-4101-9.  Google Scholar

show all references

References:
[1]

R. P. Agarwal, Difference Equations and Inequalities: Theory, Method and Applications,, second edition, (2000).   Google Scholar

[2]

C. D. Ahlbrandt and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fraction and Riccati Equations,, Kluwer Texts in the Mathematical Sciences, (1996).  doi: 10.1007/978-1-4757-2467-7.  Google Scholar

[3]

C. J. Batkam, Homoclinic orbits of first-order superquadratic Hamiltonian systems,, \emph{Discrete Contin. Dyn. Syst.}, 34 (2014), 3353.  doi: 10.3934/dcds.2014.34.3353.  Google Scholar

[4]

J. Cruz-Sampedro, Boundary values of the resolvent of Schrödinger Hamiltonian with potentials of order zero,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 1061.  doi: 10.3934/dcds.2013.33.1061.  Google Scholar

[5]

X. Q. Deng and G. Cheng, Homoclinic orbits for second order discrete Hamiltonian systems with potential changing sign,, \emph{Acta Appl. Math.}, 103 (2008), 301.  doi: 10.1007/s10440-008-9237-z.  Google Scholar

[6]

D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators,, Oxford Mathematical Monographs, (1987).   Google Scholar

[7]

M. Izydorek and J. Janczewska, Homoclinic solutions for a class of second order Hamiltonian systems,, \emph{J. Differential Equations}, 219 (2005), 375.  doi: 10.1016/j.jde.2005.06.029.  Google Scholar

[8]

G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part,, \emph{Commun. Contemp. Math.}, 4 (2002), 763.  doi: 10.1142/S0219199702000853.  Google Scholar

[9]

X. Y. Lin and X. H. Tang, Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 373 (2011), 59.  doi: 10.1016/j.jmaa.2010.06.008.  Google Scholar

[10]

X. Y. Lin and X. H. Tang, Homoclinic orbits for discrete Hamiltonian systems with subquadratic potential,, \emph{Advances in Difference Equations}, 154 (2013).   Google Scholar

[11]

M. Ma and Z. M. Guo, Homoclinic orbits and subharmonics for nonlinear second order difference equations,, \emph{Nonlinear Anal.}, 67 (2007), 1737.  doi: 10.1016/j.na.2006.08.014.  Google Scholar

[12]

W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems,, \emph{Differential Integral Equations}, 5 (1992), 1115.   Google Scholar

[13]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems,, \emph{Proc, 114 (1990), 33.  doi: 10.1017/S0308210500024240.  Google Scholar

[14]

P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems,, \emph{Math. Z.}, 206 (1991), 473.  doi: 10.1007/BF02571356.  Google Scholar

[15]

J. Sun, J. Chu and Z. Feng, Homoclinic orbits for first order periodic Hamiltonian systems with spectrum zero,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 3807.  doi: 10.3934/dcds.2013.33.3807.  Google Scholar

[16]

X. H. Tang and J. Chen, Infinitely many homoclinic orbits for a class of discrete Hamiltonian systems,, \emph{Advances in Difference Equations}, 242 (2013).  doi: 10.1186/1687-1847-2013-242.  Google Scholar

[17]

X. H. Tang and X. Y. Lin, Existence and multiplicity of homoclinic solutions for second-order discrete Hamiltonian systems with subquadratic potential,, \emph{J. Differ. Equ. Appl.}, 17 (2011), 1617.  doi: 10.1080/10236191003730514.  Google Scholar

[18]

X. H. Tang and X. Y. Lin, Infinitely many homoclinic orbits for discrete Hamiltonian systems with subquadratic potential,, \emph{J. Differ. Equ. Appl.}, 19 (2013), 796.  doi: 10.1080/10236198.2012.691168.  Google Scholar

[19]

X. H. Tang, Non-Nehari manifold method for asymptotically linear Schrödinger equation,, \emph{J. Aust. Math. Soc.}, 98 (2015), 104.  doi: 10.1017/S144678871400041X.  Google Scholar

[20]

J. S. Yu, H. Shi and Z. M. Guo, Homoclinic orbits for nonlinear difference equations containing both advance and retardation,, \emph{J. Math. Anal. Appl.}, 352 (2009), 799.  doi: 10.1016/j.jmaa.2008.11.043.  Google Scholar

[21]

Q. Q. Zhang, Homoclinic orbits for a class of discrete periodic Hamiltonian systems,, \emph{Proc. Amer. Math. Soc.}, ().   Google Scholar

[22]

V. Coti Zelati, I. Ekeland and E. Sere, A variational approach to homoclinic orbits in Hamiltonian systems,, \emph{Math. Ann.}, 288 (1990), 133.  doi: 10.1007/BF01444526.  Google Scholar

[23]

V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second second order Hamiltonian systems possessing superquadratic potentials,, \emph{J. Amer. Math. Soc.}, 4 (1991), 693.  doi: 10.2307/2939286.  Google Scholar

[24]

Z. Zhou and J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems,, \emph{J. Differential Equations}, 249 (2010), 1199.  doi: 10.1016/j.jde.2010.03.010.  Google Scholar

[25]

Z. Zhou and J. S. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity,, \emph{Acta Mathematica Sinica}, 29 (2013), 1809.  doi: 10.1007/s10114-013-0736-0.  Google Scholar

[26]

Z. Zhou, J. S. Yu and Y. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity,, \emph{Science China, 54 (2011), 83.  doi: 10.1007/s11425-010-4101-9.  Google Scholar

[1]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[2]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[3]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[4]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[5]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[6]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[9]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[12]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[15]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[16]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[19]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[20]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]