September  2015, 14(5): 1961-1986. doi: 10.3934/cpaa.2015.14.1961

Pointwise estimate for elliptic equations in periodic perforated domains

1. 

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, 30050, Taiwan

Received  November 2014 Revised  February 2015 Published  June 2015

Pointwise estimate for the solutions of elliptic equations in periodic perforated domains is concerned. Let $\epsilon$ denote the size ratio of the period of a periodic perforated domain to the whole domain. It is known that even if the given functions of the elliptic equations are bounded uniformly in $\epsilon$, the $C^{1,\alpha}$ norm and the $W^{2,p}$ norm of the elliptic solutions may not be bounded uniformly in $\epsilon$. It is also known that when $\epsilon$ closes to $0$, the elliptic solutions in the periodic perforated domains approach a solution of some homogenized elliptic equation. In this work, the Hölder uniform bound in $\epsilon$ and the Lipschitz uniform bound in $\epsilon$ for the elliptic solutions in perforated domains are proved. The $L^\infty$ and the Lipschitz convergence estimates for the difference between the elliptic solutions in the perforated domains and the solution of the homogenized elliptic equation are derived.
Citation: Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961
References:
[1]

E. Acerbi, V. Chiado Piat, G. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains,, \emph{Nonlinear Analysis}, 18 (1992), 481. doi: 10.1016/0362-546X(92)90015-7. Google Scholar

[2]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975). Google Scholar

[3]

Gregoire Allaire, Homogenization and two-scale convergence,, \emph{SIAM I. Math. Anal.}, 23 (1992), 1482. doi: 10.1137/0523084. Google Scholar

[4]

R. C. Morgan and I. Babuska, An approach for constructing families of homogenized equations for periodic media. I: An integral representation and its consequences,, \emph{SIAM J. Math. Anal.}, 22 (1991), 1. doi: 10.1137/0522001. Google Scholar

[5]

N. Bakhvalov and G. Panasenko, Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials,, Kluwer Academic Publishers, (1989). doi: 10.1007/978-94-009-2247-1. Google Scholar

[6]

B. Berkowitz, et al., Physical pictures of transport in heterogeneous media: Advection-dispersion, random walk, and fractional derivative formulations,, \emph{Water resources Research}, 38 (2002), 1191. Google Scholar

[7]

Susanne C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods,, Springer, (2008). doi: 10.1007/978-0-387-75934-0. Google Scholar

[8]

Alain Bensoussan, Jacques-Louis Lions and George Papanicolaou, Asymptotic Analysis for Periodic Structures,, Elsevier North-Holland, (1978). Google Scholar

[9]

Li-Qun Cao, Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains,, \emph{Numerische Mathematik}, 103 (2006), 11. doi: 10.1007/s00211-005-0668-4. Google Scholar

[10]

Philippe G. Ciarlet, The Finite Element Method for Elliptic Problems,, Amsterdam: North-Holland, (1978). Google Scholar

[11]

D. Cioranescu, A. Damlamian, G. Grisoa and D. Onofrei, The periodic unfolding method for perforated domains and Neumann sieve models,, \emph{J. Math. Pures Appl.}, 89 (2008), 248. doi: 10.1016/j.matpur.2007.12.008. Google Scholar

[12]

M. Giaquinta, Multiple integrals in the calculus of variations,, Study 105, (1983). Google Scholar

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[14]

Thomas Y. Hou, Xiao-Hui Wu and Zhiqiang Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients,, \emph{Math. Comp.}, 68 (1999), 913. doi: 10.1090/S0025-5718-99-01077-7. Google Scholar

[15]

V.V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functions,, Springer-Verlag, (1994). doi: 10.1007/978-3-642-84659-5. Google Scholar

[16]

Viviane Klein and Malgorzata Peszynska, Adaptive Double-Diffusion Model and Comparison to a Highly Heterogeneous Micro-Model,, \emph{Journal of Applied Mathematics}, (2012) (2012). Google Scholar

[17]

J. L. Lions, Asymptotic expansions in perforated media with a periodic structure,, \emph{The Rocky Mountain J. Math.}, 10 (1980), 125. doi: 10.1216/RMJ-1980-10-1-125. Google Scholar

[18]

N. Neuss, W. Jäger and G. Wittum, Homogenization and multigrid,, \emph{Computing}, 66 (2001), 1. doi: 10.1007/s006070170036. Google Scholar

[19]

O. A. Oleinik, A. S. Shamaev and G. A. Tosifan, Mathematical Problems in Elasticity and Homogenization,, North-Holland, (1992). Google Scholar

show all references

References:
[1]

E. Acerbi, V. Chiado Piat, G. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains,, \emph{Nonlinear Analysis}, 18 (1992), 481. doi: 10.1016/0362-546X(92)90015-7. Google Scholar

[2]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975). Google Scholar

[3]

Gregoire Allaire, Homogenization and two-scale convergence,, \emph{SIAM I. Math. Anal.}, 23 (1992), 1482. doi: 10.1137/0523084. Google Scholar

[4]

R. C. Morgan and I. Babuska, An approach for constructing families of homogenized equations for periodic media. I: An integral representation and its consequences,, \emph{SIAM J. Math. Anal.}, 22 (1991), 1. doi: 10.1137/0522001. Google Scholar

[5]

N. Bakhvalov and G. Panasenko, Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials,, Kluwer Academic Publishers, (1989). doi: 10.1007/978-94-009-2247-1. Google Scholar

[6]

B. Berkowitz, et al., Physical pictures of transport in heterogeneous media: Advection-dispersion, random walk, and fractional derivative formulations,, \emph{Water resources Research}, 38 (2002), 1191. Google Scholar

[7]

Susanne C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods,, Springer, (2008). doi: 10.1007/978-0-387-75934-0. Google Scholar

[8]

Alain Bensoussan, Jacques-Louis Lions and George Papanicolaou, Asymptotic Analysis for Periodic Structures,, Elsevier North-Holland, (1978). Google Scholar

[9]

Li-Qun Cao, Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains,, \emph{Numerische Mathematik}, 103 (2006), 11. doi: 10.1007/s00211-005-0668-4. Google Scholar

[10]

Philippe G. Ciarlet, The Finite Element Method for Elliptic Problems,, Amsterdam: North-Holland, (1978). Google Scholar

[11]

D. Cioranescu, A. Damlamian, G. Grisoa and D. Onofrei, The periodic unfolding method for perforated domains and Neumann sieve models,, \emph{J. Math. Pures Appl.}, 89 (2008), 248. doi: 10.1016/j.matpur.2007.12.008. Google Scholar

[12]

M. Giaquinta, Multiple integrals in the calculus of variations,, Study 105, (1983). Google Scholar

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[14]

Thomas Y. Hou, Xiao-Hui Wu and Zhiqiang Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients,, \emph{Math. Comp.}, 68 (1999), 913. doi: 10.1090/S0025-5718-99-01077-7. Google Scholar

[15]

V.V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functions,, Springer-Verlag, (1994). doi: 10.1007/978-3-642-84659-5. Google Scholar

[16]

Viviane Klein and Malgorzata Peszynska, Adaptive Double-Diffusion Model and Comparison to a Highly Heterogeneous Micro-Model,, \emph{Journal of Applied Mathematics}, (2012) (2012). Google Scholar

[17]

J. L. Lions, Asymptotic expansions in perforated media with a periodic structure,, \emph{The Rocky Mountain J. Math.}, 10 (1980), 125. doi: 10.1216/RMJ-1980-10-1-125. Google Scholar

[18]

N. Neuss, W. Jäger and G. Wittum, Homogenization and multigrid,, \emph{Computing}, 66 (2001), 1. doi: 10.1007/s006070170036. Google Scholar

[19]

O. A. Oleinik, A. S. Shamaev and G. A. Tosifan, Mathematical Problems in Elasticity and Homogenization,, North-Holland, (1992). Google Scholar

[1]

Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks & Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97

[2]

Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic two-phase free boundary problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6961-6978. doi: 10.3934/dcds.2019239

[3]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks & Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006

[4]

Clément Cancès. On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks & Heterogeneous Media, 2010, 5 (3) : 635-647. doi: 10.3934/nhm.2010.5.635

[5]

Brahim Amaziane, Mladen Jurak, Leonid Pankratov, Anja Vrbaški. Some remarks on the homogenization of immiscible incompressible two-phase flow in double porosity media. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 629-665. doi: 10.3934/dcdsb.2018037

[6]

Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks & Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020

[7]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1217-1251. doi: 10.3934/dcdsb.2013.18.1217

[8]

Massimo Lanza de Cristoforis, aolo Musolino. A quasi-linear heat transmission problem in a periodic two-phase dilute composite. A functional analytic approach. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2509-2542. doi: 10.3934/cpaa.2014.13.2509

[9]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[10]

Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the two-phase Stefan problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5379-5405. doi: 10.3934/dcds.2013.33.5379

[11]

Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure & Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591

[12]

Kenta Ohi, Tatsuo Iguchi. A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1205-1240. doi: 10.3934/dcds.2009.23.1205

[13]

Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks & Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361

[14]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[15]

Eberhard Bänsch, Steffen Basting, Rolf Krahl. Numerical simulation of two-phase flows with heat and mass transfer. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2325-2347. doi: 10.3934/dcds.2015.35.2325

[16]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 1-39. doi: 10.3934/dcds.2010.28.1

[17]

Jie Jiang, Yinghua Li, Chun Liu. Two-phase incompressible flows with variable density: An energetic variational approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3243-3284. doi: 10.3934/dcds.2017138

[18]

V. S. Manoranjan, Hong-Ming Yin, R. Showalter. On two-phase Stefan problem arising from a microwave heating process. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1155-1168. doi: 10.3934/dcds.2006.15.1155

[19]

Feng Ma, Mingfang Ni. A two-phase method for multidimensional number partitioning problem. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 203-206. doi: 10.3934/naco.2013.3.203

[20]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]