\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pointwise estimate for elliptic equations in periodic perforated domains

Abstract Related Papers Cited by
  • Pointwise estimate for the solutions of elliptic equations in periodic perforated domains is concerned. Let $\epsilon$ denote the size ratio of the period of a periodic perforated domain to the whole domain. It is known that even if the given functions of the elliptic equations are bounded uniformly in $\epsilon$, the $C^{1,\alpha}$ norm and the $W^{2,p}$ norm of the elliptic solutions may not be bounded uniformly in $\epsilon$. It is also known that when $\epsilon$ closes to $0$, the elliptic solutions in the periodic perforated domains approach a solution of some homogenized elliptic equation. In this work, the Hölder uniform bound in $\epsilon$ and the Lipschitz uniform bound in $\epsilon$ for the elliptic solutions in perforated domains are proved. The $L^\infty$ and the Lipschitz convergence estimates for the difference between the elliptic solutions in the perforated domains and the solution of the homogenized elliptic equation are derived.
    Mathematics Subject Classification: Primary: 35J05, 35J15, 35J25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Acerbi, V. Chiado Piat, G. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Analysis, 18 (1992), 481-496.doi: 10.1016/0362-546X(92)90015-7.

    [2]

    R. A. Adams, Sobolev Spaces, Academic Press, 1975.

    [3]

    Gregoire Allaire, Homogenization and two-scale convergence, SIAM I. Math. Anal., 23 (1992), 1482-1518.doi: 10.1137/0523084.

    [4]

    R. C. Morgan and I. Babuska, An approach for constructing families of homogenized equations for periodic media. I: An integral representation and its consequences, SIAM J. Math. Anal., 22 (1991), 1-15.doi: 10.1137/0522001.

    [5]

    N. Bakhvalov and G. Panasenko, Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials, Kluwer Academic Publishers, 1989.doi: 10.1007/978-94-009-2247-1.

    [6]

    B. Berkowitz, et al., Physical pictures of transport in heterogeneous media: Advection-dispersion, random walk, and fractional derivative formulations, Water resources Research, 38 (2002), 1191-1194.

    [7]

    Susanne C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, Springer, 2008.doi: 10.1007/978-0-387-75934-0.

    [8]

    Alain Bensoussan, Jacques-Louis Lions and George Papanicolaou, Asymptotic Analysis for Periodic Structures, Elsevier North-Holland, 1978.

    [9]

    Li-Qun Cao, Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains, Numerische Mathematik, 103 (2006), 11-45.doi: 10.1007/s00211-005-0668-4.

    [10]

    Philippe G. Ciarlet, The Finite Element Method for Elliptic Problems, Amsterdam: North-Holland, 1978.

    [11]

    D. Cioranescu, A. Damlamian, G. Grisoa and D. Onofrei, The periodic unfolding method for perforated domains and Neumann sieve models, J. Math. Pures Appl., 89 (2008), 248-277.doi: 10.1016/j.matpur.2007.12.008.

    [12]

    M. Giaquinta, Multiple integrals in the calculus of variations, Study 105, Annals of Math. Studies, Princeton Univ. Press., 1983.

    [13]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, second edition, 1983.doi: 10.1007/978-3-642-61798-0.

    [14]

    Thomas Y. Hou, Xiao-Hui Wu and Zhiqiang Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp., 68 (1999), 913-943.doi: 10.1090/S0025-5718-99-01077-7.

    [15]

    V.V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functions, Springer-Verlag, 1994.doi: 10.1007/978-3-642-84659-5.

    [16]

    Viviane Klein and Malgorzata Peszynska, Adaptive Double-Diffusion Model and Comparison to a Highly Heterogeneous Micro-Model, Journal of Applied Mathematics, (2012) (2012), 26 pages.

    [17]

    J. L. Lions, Asymptotic expansions in perforated media with a periodic structure, The Rocky Mountain J. Math., 10 (1980), 125-144.doi: 10.1216/RMJ-1980-10-1-125.

    [18]

    N. Neuss, W. Jäger and G. Wittum, Homogenization and multigrid, Computing, 66 (2001), 1-26.doi: 10.1007/s006070170036.

    [19]

    O. A. Oleinik, A. S. Shamaev and G. A. Tosifan, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(146) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return