September  2015, 14(5): 1987-2007. doi: 10.3934/cpaa.2015.14.1987

An extension of a Theorem of V. Šverák to variable exponent spaces

1. 

IMAS-CONICET and Departamento de Matemática, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1 (1428), Buenos Aires , Argentina

2. 

Departamento de Matematica, FCEyN, UBA, 1428 Buenos Aires, Argentina

Received  November 2014 Revised  April 2015 Published  June 2015

In 1993, V. Šverák proved that if a sequence of uniformly bounded domains $\Omega_n\subset R^2$ such that $\Omega_n\to \Omega$ in the sense of the Hausdorff complementary topology, verify that the number of connected components of its complements are bounded, then the solutions of the Dirichlet problem for the Laplacian with source $f\in L^2(R^2)$ converges to the solution of the limit domain with same source. In this paper, we extend Šverák result to variable exponent spaces.
Citation: Carla Baroncini, Julián Fernández Bonder. An extension of a Theorem of V. Šverák to variable exponent spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1987-2007. doi: 10.3934/cpaa.2015.14.1987
References:
[1]

G. Allaire, Shape Optimization by the Homogenization Method, vol. 146 of Applied Mathematical Sciences,, Springer-Verlag, (2002).  doi: 10.1007/978-1-4684-9286-6.  Google Scholar

[2]

I. Babuška and R. Výborný, Continuous dependence of eigenvalues on the domain,, \emph{Czechoslovak Math. J.}, 15 (1965), 169.   Google Scholar

[3]

H. Brezis, Analyse fonctionnelle,, Collection Math\'ematiques Appliqu\'ees pour la Ma\^\i trise. [Collection of Applied Mathematics for the Master's Degree], (1983).   Google Scholar

[4]

D. Bucur and P. Trebeschi, Shape optimisation problems governed by nonlinear state equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 128 (1998), 945.  doi: 10.1017/S0308210500030006.  Google Scholar

[5]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, \emph{SIAM J. Appl. Math.}, 66 (2006), 1383.  doi: 10.1137/050624522.  Google Scholar

[6]

D. Cioranescu and F. Murat, A strange term coming from nowhere,, in \emph{Topics in the Mathematical Modelling of Composite Materials}, (1997), 45.   Google Scholar

[7]

L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, vol. 2017 of Lecture Notes in Mathematics,, Springer, (2011).   Google Scholar

[8]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, North-Holland Publishing Co., (1976).   Google Scholar

[9]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, \emph{J. Math. Anal. Appl.}, 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[10]

R. Gariepy and W. P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations,, \emph{Arch. Rational Mech. Anal.}, 67 (1977), 25.   Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Classics in Mathematics, (2001).   Google Scholar

[12]

A. Henrot and M. Pierre, Variation et optimisation de formes,, vol. 48 of Math\'ematiques & Applications (Berlin) [Mathematics & Applications], (2005).  doi: 10.1007/3-540-37689-5.  Google Scholar

[13]

I. Hong, On an eigenvalue and eigenfunction problem of the equation $\Delta u+\lambda u=0$,, \emph{K\=odai Math. Sem. Rep.}, 9 (1957), 179.   Google Scholar

[14]

I. Hong, A supplement to "On an eigenvalue and eigenfunction problem of the equation $\Delta u+\lambda u=0$'',, \emph{K\=odai Math. Sem. Rep.}, 10 (1958), 27.   Google Scholar

[15]

I. Hong, On the equation $\Delta u+\lambda f(x,\,y)=0$ under the fixed boundary condition,, \emph{K\=odai Math. Sem. Rep.}, 11 (1959), 95.   Google Scholar

[16]

T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations,, \emph{Acta Math.}, 172 (1994), 137.   Google Scholar

[17]

T. Lukkari, Boundary continuity of solutions to elliptic equations with nonstandard growth,, \emph{Manuscripta Math.}, 132 (2010), 463.  doi: 10.1007/s00229-010-0355-3.  Google Scholar

[18]

J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, vol. 51 of Mathematical Surveys and Monographs,, American Mathematical Society, (1997).  doi: 10.1090/surv/051.  Google Scholar

[19]

V. G. Mazja, The continuity at a boundary point of the solutions of quasi-linear elliptic equations,, \emph{Vestnik Leningrad. Univ.}, 25 (1970), 42.   Google Scholar

[20]

O. Pironneau, Optimal Shape Design for Elliptic Systems,, Springer Series in Computational Physics, (1984).  doi: 10.1007/978-3-642-87722-3.  Google Scholar

[21]

M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory, vol. 1748 of Lecture Notes in Mathematics,, Springer-Verlag, (2000).  doi: 10.1007/BFb0104029.  Google Scholar

[22]

J. Simon, Régularité de la solution d'une équation non linéaire dans $R^N$,, in \emph{Journ\'ees d'Analyse Non Lin\'eaire (Proc. Conf., (1977), 205.   Google Scholar

[23]

V. Šverák, On optimal shape design,, \emph{J. Math. Pures Appl.}, 72 (1993), 537.   Google Scholar

[24]

L. Tartar, The General Theory of Homogenization, vol. 7 of Lecture Notes of the Unione Matematica Italiana,, Springer-Verlag, (2009).  doi: 10.1007/978-3-642-05195-1.  Google Scholar

show all references

References:
[1]

G. Allaire, Shape Optimization by the Homogenization Method, vol. 146 of Applied Mathematical Sciences,, Springer-Verlag, (2002).  doi: 10.1007/978-1-4684-9286-6.  Google Scholar

[2]

I. Babuška and R. Výborný, Continuous dependence of eigenvalues on the domain,, \emph{Czechoslovak Math. J.}, 15 (1965), 169.   Google Scholar

[3]

H. Brezis, Analyse fonctionnelle,, Collection Math\'ematiques Appliqu\'ees pour la Ma\^\i trise. [Collection of Applied Mathematics for the Master's Degree], (1983).   Google Scholar

[4]

D. Bucur and P. Trebeschi, Shape optimisation problems governed by nonlinear state equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 128 (1998), 945.  doi: 10.1017/S0308210500030006.  Google Scholar

[5]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, \emph{SIAM J. Appl. Math.}, 66 (2006), 1383.  doi: 10.1137/050624522.  Google Scholar

[6]

D. Cioranescu and F. Murat, A strange term coming from nowhere,, in \emph{Topics in the Mathematical Modelling of Composite Materials}, (1997), 45.   Google Scholar

[7]

L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, vol. 2017 of Lecture Notes in Mathematics,, Springer, (2011).   Google Scholar

[8]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, North-Holland Publishing Co., (1976).   Google Scholar

[9]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, \emph{J. Math. Anal. Appl.}, 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[10]

R. Gariepy and W. P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations,, \emph{Arch. Rational Mech. Anal.}, 67 (1977), 25.   Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Classics in Mathematics, (2001).   Google Scholar

[12]

A. Henrot and M. Pierre, Variation et optimisation de formes,, vol. 48 of Math\'ematiques & Applications (Berlin) [Mathematics & Applications], (2005).  doi: 10.1007/3-540-37689-5.  Google Scholar

[13]

I. Hong, On an eigenvalue and eigenfunction problem of the equation $\Delta u+\lambda u=0$,, \emph{K\=odai Math. Sem. Rep.}, 9 (1957), 179.   Google Scholar

[14]

I. Hong, A supplement to "On an eigenvalue and eigenfunction problem of the equation $\Delta u+\lambda u=0$'',, \emph{K\=odai Math. Sem. Rep.}, 10 (1958), 27.   Google Scholar

[15]

I. Hong, On the equation $\Delta u+\lambda f(x,\,y)=0$ under the fixed boundary condition,, \emph{K\=odai Math. Sem. Rep.}, 11 (1959), 95.   Google Scholar

[16]

T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations,, \emph{Acta Math.}, 172 (1994), 137.   Google Scholar

[17]

T. Lukkari, Boundary continuity of solutions to elliptic equations with nonstandard growth,, \emph{Manuscripta Math.}, 132 (2010), 463.  doi: 10.1007/s00229-010-0355-3.  Google Scholar

[18]

J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, vol. 51 of Mathematical Surveys and Monographs,, American Mathematical Society, (1997).  doi: 10.1090/surv/051.  Google Scholar

[19]

V. G. Mazja, The continuity at a boundary point of the solutions of quasi-linear elliptic equations,, \emph{Vestnik Leningrad. Univ.}, 25 (1970), 42.   Google Scholar

[20]

O. Pironneau, Optimal Shape Design for Elliptic Systems,, Springer Series in Computational Physics, (1984).  doi: 10.1007/978-3-642-87722-3.  Google Scholar

[21]

M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory, vol. 1748 of Lecture Notes in Mathematics,, Springer-Verlag, (2000).  doi: 10.1007/BFb0104029.  Google Scholar

[22]

J. Simon, Régularité de la solution d'une équation non linéaire dans $R^N$,, in \emph{Journ\'ees d'Analyse Non Lin\'eaire (Proc. Conf., (1977), 205.   Google Scholar

[23]

V. Šverák, On optimal shape design,, \emph{J. Math. Pures Appl.}, 72 (1993), 537.   Google Scholar

[24]

L. Tartar, The General Theory of Homogenization, vol. 7 of Lecture Notes of the Unione Matematica Italiana,, Springer-Verlag, (2009).  doi: 10.1007/978-3-642-05195-1.  Google Scholar

[1]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[2]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[3]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[4]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[5]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[6]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[7]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[8]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[9]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[10]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[11]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[12]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[13]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[14]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[15]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[16]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]