\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability of degenerate parabolic Cauchy problems

Abstract Related Papers Cited by
  • We prove that solutions to Cauchy problems related to the $p$-parabolic equations are stable with respect to the nonlinearity exponent $p$. More specifically, solutions with a fixed initial trace converge in an $L^q$-space to a solution of the limit problem as $p>2$ varies.
    Mathematics Subject Classification: Primary: 35K55; Secondary: 35K15, 35K65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237-258.doi: 10.1006/jfan.1996.3040.

    [2]

    E. DiBenedetto and M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc., 314 (1989), 187-224.doi: 10.2307/2001442.

    [3]

    E. DiBenedetto, Degenerate Parabolic Equations, Universitext. Springer-Verlag, New York, 1993.doi: 10.1007/978-1-4612-0895-2.

    [4]

    Y. Fujishima, J. Habermann, J. Kinnunen and M. Masson, Stability for parabolic quasiminimizers, Potential Anal. (to appear). Available at https://www.mittag-leffler.se/preprints/files/IML-1314f-01.pdf.

    [5]

    S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the $p$-Laplacian equation, Rev. Mat. Iberoam., 4 (1988), 339-354.doi: 10.4171/RMI/77.

    [6]

    J. Kinnunen and J. Lewis, Higher integrability for parabolic systems of $p$-Laplacian type, Duke Math J., 102 (2000), 253-272.doi: 10.1215/S0012-7094-00-10223-2.

    [7]

    J. Kinnunen and P. Lindqvist, Summability of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Sc. Norm. Super. Pisa Cl. Sci., 4 (2005), 59-78.

    [8]

    J. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl., 185 (2006), 411-435.doi: 10.1007/s10231-005-0160-x.

    [9]

    J. Kinnunen and M. Parviainen, Stability for degenerate parabolic equations, Adv. Calc. Var., 3 (2010), 29-48.doi: 10.1515/ACV.2010.002.

    [10]

    T. Kuusi and M. Parviainen, Existence for a degenerate Cauchy problem, Manuscripta Math., 128 (2009), 213-249.doi: 10.1007/s00229-008-0232-5.

    [11]

    G. Li and O. Martio, Stability of solutions of varying degenerate elliptic equations, Indiana Univ. Math. J., 47 (1998), 873-891.doi: 10.1512/iumj.1998.47.1458.

    [12]

    P. Lindqvist, Stability for the solutions of div$(|\nabla u |^{p-2}\nabla u)=f$ with varying $p$, J. Math. Anal. Appl., 127 (1987), 93-102.doi: 10.1016/0022-247X(87)90142-9.

    [13]

    P. Lindqvist, On nonlinear Rayleigh quotients, Potential Anal., 2 (1993), 199-218.doi: 10.1007/BF01048505.

    [14]

    T. Lukkari, Stability of solutions to nonlinear diffusion equations, Submitted. Available at http://arxiv.org/abs/1206.2492.

    [15]

    J. Naumann, Einführung in die Theorie parabolischer Variationsungleichungen, volume 64 of Teubner-Texte zur Mathematik, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1984.

    [16]

    R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, volume 49 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997.

    [17]

    J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.doi: 10.1007/BF01762360.

    [18]

    J. L. Vázquez, The Porous Medium Equation-Mathematical Theory, Oxford University Press, Oxford, 2007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(83) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return