January  2015, 14(1): 201-216. doi: 10.3934/cpaa.2015.14.201

Stability of degenerate parabolic Cauchy problems

1. 

Department of Mathematics and Statistics, P.O. Box 35, FI-40014 University of Jyväskylä, Finland, Finland

Received  January 2014 Revised  February 2014 Published  September 2014

We prove that solutions to Cauchy problems related to the $p$-parabolic equations are stable with respect to the nonlinearity exponent $p$. More specifically, solutions with a fixed initial trace converge in an $L^q$-space to a solution of the limit problem as $p>2$ varies.
Citation: Teemu Lukkari, Mikko Parviainen. Stability of degenerate parabolic Cauchy problems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 201-216. doi: 10.3934/cpaa.2015.14.201
References:
[1]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data,, J. Funct. Anal., 147 (1997), 237.  doi: 10.1006/jfan.1996.3040.  Google Scholar

[2]

E. DiBenedetto and M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation,, Trans. Amer. Math. Soc., 314 (1989), 187.  doi: 10.2307/2001442.  Google Scholar

[3]

E. DiBenedetto, Degenerate Parabolic Equations,, Universitext. Springer-Verlag, (1993).  doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[4]

Y. Fujishima, J. Habermann, J. Kinnunen and M. Masson, Stability for parabolic quasiminimizers,, Potential Anal. (to appear). Available at , ().   Google Scholar

[5]

S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the $p$-Laplacian equation,, Rev. Mat. Iberoam., 4 (1988), 339.  doi: 10.4171/RMI/77.  Google Scholar

[6]

J. Kinnunen and J. Lewis, Higher integrability for parabolic systems of $p$-Laplacian type,, Duke Math J., 102 (2000), 253.  doi: 10.1215/S0012-7094-00-10223-2.  Google Scholar

[7]

J. Kinnunen and P. Lindqvist, Summability of semicontinuous supersolutions to a quasilinear parabolic equation,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 4 (2005), 59.   Google Scholar

[8]

J. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation,, Ann. Mat. Pura Appl., 185 (2006), 411.  doi: 10.1007/s10231-005-0160-x.  Google Scholar

[9]

J. Kinnunen and M. Parviainen, Stability for degenerate parabolic equations,, Adv. Calc. Var., 3 (2010), 29.  doi: 10.1515/ACV.2010.002.  Google Scholar

[10]

T. Kuusi and M. Parviainen, Existence for a degenerate Cauchy problem,, Manuscripta Math., 128 (2009), 213.  doi: 10.1007/s00229-008-0232-5.  Google Scholar

[11]

G. Li and O. Martio, Stability of solutions of varying degenerate elliptic equations,, Indiana Univ. Math. J., 47 (1998), 873.  doi: 10.1512/iumj.1998.47.1458.  Google Scholar

[12]

P. Lindqvist, Stability for the solutions of div$(|\nabla u |^{p-2}\nabla u)=f$ with varying $p$,, J. Math. Anal. Appl., 127 (1987), 93.  doi: 10.1016/0022-247X(87)90142-9.  Google Scholar

[13]

P. Lindqvist, On nonlinear Rayleigh quotients,, Potential Anal., 2 (1993), 199.  doi: 10.1007/BF01048505.  Google Scholar

[14]

T. Lukkari, Stability of solutions to nonlinear diffusion equations,, Submitted. Available at , ().   Google Scholar

[15]

J. Naumann, Einführung in die Theorie parabolischer Variationsungleichungen, volume 64 of Teubner-Texte zur Mathematik,, BSB B. G. Teubner Verlagsgesellschaft, (1984).   Google Scholar

[16]

R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations,, volume 49 of Mathematical Surveys and Monographs, (1997).   Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[18]

J. L. Vázquez, The Porous Medium Equation-Mathematical Theory,, Oxford University Press, (2007).   Google Scholar

show all references

References:
[1]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data,, J. Funct. Anal., 147 (1997), 237.  doi: 10.1006/jfan.1996.3040.  Google Scholar

[2]

E. DiBenedetto and M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation,, Trans. Amer. Math. Soc., 314 (1989), 187.  doi: 10.2307/2001442.  Google Scholar

[3]

E. DiBenedetto, Degenerate Parabolic Equations,, Universitext. Springer-Verlag, (1993).  doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[4]

Y. Fujishima, J. Habermann, J. Kinnunen and M. Masson, Stability for parabolic quasiminimizers,, Potential Anal. (to appear). Available at , ().   Google Scholar

[5]

S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the $p$-Laplacian equation,, Rev. Mat. Iberoam., 4 (1988), 339.  doi: 10.4171/RMI/77.  Google Scholar

[6]

J. Kinnunen and J. Lewis, Higher integrability for parabolic systems of $p$-Laplacian type,, Duke Math J., 102 (2000), 253.  doi: 10.1215/S0012-7094-00-10223-2.  Google Scholar

[7]

J. Kinnunen and P. Lindqvist, Summability of semicontinuous supersolutions to a quasilinear parabolic equation,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 4 (2005), 59.   Google Scholar

[8]

J. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation,, Ann. Mat. Pura Appl., 185 (2006), 411.  doi: 10.1007/s10231-005-0160-x.  Google Scholar

[9]

J. Kinnunen and M. Parviainen, Stability for degenerate parabolic equations,, Adv. Calc. Var., 3 (2010), 29.  doi: 10.1515/ACV.2010.002.  Google Scholar

[10]

T. Kuusi and M. Parviainen, Existence for a degenerate Cauchy problem,, Manuscripta Math., 128 (2009), 213.  doi: 10.1007/s00229-008-0232-5.  Google Scholar

[11]

G. Li and O. Martio, Stability of solutions of varying degenerate elliptic equations,, Indiana Univ. Math. J., 47 (1998), 873.  doi: 10.1512/iumj.1998.47.1458.  Google Scholar

[12]

P. Lindqvist, Stability for the solutions of div$(|\nabla u |^{p-2}\nabla u)=f$ with varying $p$,, J. Math. Anal. Appl., 127 (1987), 93.  doi: 10.1016/0022-247X(87)90142-9.  Google Scholar

[13]

P. Lindqvist, On nonlinear Rayleigh quotients,, Potential Anal., 2 (1993), 199.  doi: 10.1007/BF01048505.  Google Scholar

[14]

T. Lukkari, Stability of solutions to nonlinear diffusion equations,, Submitted. Available at , ().   Google Scholar

[15]

J. Naumann, Einführung in die Theorie parabolischer Variationsungleichungen, volume 64 of Teubner-Texte zur Mathematik,, BSB B. G. Teubner Verlagsgesellschaft, (1984).   Google Scholar

[16]

R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations,, volume 49 of Mathematical Surveys and Monographs, (1997).   Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[18]

J. L. Vázquez, The Porous Medium Equation-Mathematical Theory,, Oxford University Press, (2007).   Google Scholar

[1]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[2]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[3]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[4]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[5]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[7]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[10]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[11]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[12]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[13]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[15]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[16]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[17]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[18]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[19]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[20]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]