January  2015, 14(1): 201-216. doi: 10.3934/cpaa.2015.14.201

Stability of degenerate parabolic Cauchy problems

1. 

Department of Mathematics and Statistics, P.O. Box 35, FI-40014 University of Jyväskylä, Finland, Finland

Received  January 2014 Revised  February 2014 Published  September 2014

We prove that solutions to Cauchy problems related to the $p$-parabolic equations are stable with respect to the nonlinearity exponent $p$. More specifically, solutions with a fixed initial trace converge in an $L^q$-space to a solution of the limit problem as $p>2$ varies.
Citation: Teemu Lukkari, Mikko Parviainen. Stability of degenerate parabolic Cauchy problems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 201-216. doi: 10.3934/cpaa.2015.14.201
References:
[1]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data,, J. Funct. Anal., 147 (1997), 237.  doi: 10.1006/jfan.1996.3040.  Google Scholar

[2]

E. DiBenedetto and M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation,, Trans. Amer. Math. Soc., 314 (1989), 187.  doi: 10.2307/2001442.  Google Scholar

[3]

E. DiBenedetto, Degenerate Parabolic Equations,, Universitext. Springer-Verlag, (1993).  doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[4]

Y. Fujishima, J. Habermann, J. Kinnunen and M. Masson, Stability for parabolic quasiminimizers,, Potential Anal. (to appear). Available at , ().   Google Scholar

[5]

S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the $p$-Laplacian equation,, Rev. Mat. Iberoam., 4 (1988), 339.  doi: 10.4171/RMI/77.  Google Scholar

[6]

J. Kinnunen and J. Lewis, Higher integrability for parabolic systems of $p$-Laplacian type,, Duke Math J., 102 (2000), 253.  doi: 10.1215/S0012-7094-00-10223-2.  Google Scholar

[7]

J. Kinnunen and P. Lindqvist, Summability of semicontinuous supersolutions to a quasilinear parabolic equation,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 4 (2005), 59.   Google Scholar

[8]

J. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation,, Ann. Mat. Pura Appl., 185 (2006), 411.  doi: 10.1007/s10231-005-0160-x.  Google Scholar

[9]

J. Kinnunen and M. Parviainen, Stability for degenerate parabolic equations,, Adv. Calc. Var., 3 (2010), 29.  doi: 10.1515/ACV.2010.002.  Google Scholar

[10]

T. Kuusi and M. Parviainen, Existence for a degenerate Cauchy problem,, Manuscripta Math., 128 (2009), 213.  doi: 10.1007/s00229-008-0232-5.  Google Scholar

[11]

G. Li and O. Martio, Stability of solutions of varying degenerate elliptic equations,, Indiana Univ. Math. J., 47 (1998), 873.  doi: 10.1512/iumj.1998.47.1458.  Google Scholar

[12]

P. Lindqvist, Stability for the solutions of div$(|\nabla u |^{p-2}\nabla u)=f$ with varying $p$,, J. Math. Anal. Appl., 127 (1987), 93.  doi: 10.1016/0022-247X(87)90142-9.  Google Scholar

[13]

P. Lindqvist, On nonlinear Rayleigh quotients,, Potential Anal., 2 (1993), 199.  doi: 10.1007/BF01048505.  Google Scholar

[14]

T. Lukkari, Stability of solutions to nonlinear diffusion equations,, Submitted. Available at , ().   Google Scholar

[15]

J. Naumann, Einführung in die Theorie parabolischer Variationsungleichungen, volume 64 of Teubner-Texte zur Mathematik,, BSB B. G. Teubner Verlagsgesellschaft, (1984).   Google Scholar

[16]

R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations,, volume 49 of Mathematical Surveys and Monographs, (1997).   Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[18]

J. L. Vázquez, The Porous Medium Equation-Mathematical Theory,, Oxford University Press, (2007).   Google Scholar

show all references

References:
[1]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data,, J. Funct. Anal., 147 (1997), 237.  doi: 10.1006/jfan.1996.3040.  Google Scholar

[2]

E. DiBenedetto and M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation,, Trans. Amer. Math. Soc., 314 (1989), 187.  doi: 10.2307/2001442.  Google Scholar

[3]

E. DiBenedetto, Degenerate Parabolic Equations,, Universitext. Springer-Verlag, (1993).  doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[4]

Y. Fujishima, J. Habermann, J. Kinnunen and M. Masson, Stability for parabolic quasiminimizers,, Potential Anal. (to appear). Available at , ().   Google Scholar

[5]

S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the $p$-Laplacian equation,, Rev. Mat. Iberoam., 4 (1988), 339.  doi: 10.4171/RMI/77.  Google Scholar

[6]

J. Kinnunen and J. Lewis, Higher integrability for parabolic systems of $p$-Laplacian type,, Duke Math J., 102 (2000), 253.  doi: 10.1215/S0012-7094-00-10223-2.  Google Scholar

[7]

J. Kinnunen and P. Lindqvist, Summability of semicontinuous supersolutions to a quasilinear parabolic equation,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 4 (2005), 59.   Google Scholar

[8]

J. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation,, Ann. Mat. Pura Appl., 185 (2006), 411.  doi: 10.1007/s10231-005-0160-x.  Google Scholar

[9]

J. Kinnunen and M. Parviainen, Stability for degenerate parabolic equations,, Adv. Calc. Var., 3 (2010), 29.  doi: 10.1515/ACV.2010.002.  Google Scholar

[10]

T. Kuusi and M. Parviainen, Existence for a degenerate Cauchy problem,, Manuscripta Math., 128 (2009), 213.  doi: 10.1007/s00229-008-0232-5.  Google Scholar

[11]

G. Li and O. Martio, Stability of solutions of varying degenerate elliptic equations,, Indiana Univ. Math. J., 47 (1998), 873.  doi: 10.1512/iumj.1998.47.1458.  Google Scholar

[12]

P. Lindqvist, Stability for the solutions of div$(|\nabla u |^{p-2}\nabla u)=f$ with varying $p$,, J. Math. Anal. Appl., 127 (1987), 93.  doi: 10.1016/0022-247X(87)90142-9.  Google Scholar

[13]

P. Lindqvist, On nonlinear Rayleigh quotients,, Potential Anal., 2 (1993), 199.  doi: 10.1007/BF01048505.  Google Scholar

[14]

T. Lukkari, Stability of solutions to nonlinear diffusion equations,, Submitted. Available at , ().   Google Scholar

[15]

J. Naumann, Einführung in die Theorie parabolischer Variationsungleichungen, volume 64 of Teubner-Texte zur Mathematik,, BSB B. G. Teubner Verlagsgesellschaft, (1984).   Google Scholar

[16]

R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations,, volume 49 of Mathematical Surveys and Monographs, (1997).   Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[18]

J. L. Vázquez, The Porous Medium Equation-Mathematical Theory,, Oxford University Press, (2007).   Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[9]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[10]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[11]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[13]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[15]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[16]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[17]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[18]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[19]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[20]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]