September  2015, 14(5): 2021-2042. doi: 10.3934/cpaa.2015.14.2021

Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

2. 

School of Mathematics, South China University of Technology, Guangzhou 510641, China

Received  September 2014 Revised  January 2015 Published  June 2015

In this paper we study an asymptotic behavior of a solution to the initial boundary value problem for a viscous liquid-gas two-phase flow model in a half line $R_+:=(0,\infty).$ Our idea mainly comes from [23] and [29] which describe an isothermal Navier-Stokes equation in a half line. We obtain the convergence rate of the time global solution towards corresponding stationary solution in Eulerian coordinates. Precisely, if an initial perturbation decays with the algebraic or the exponential rate in space, the solution converges to the corresponding stationary solution as time tends to infinity with the algebraic or the exponential rate in time. These theorems are proved by a weighted energy method.
Citation: Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2021-2042. doi: 10.3934/cpaa.2015.14.2021
References:
[1]

M. Baudin, C. Berthon, F. Coquel, R. Masson and Q. H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law,, \emph{Numer. Math.}, 99 (2005), 411.  doi: 10.1007/s00211-004-0558-1.  Google Scholar

[2]

M. Baudin, F. Coquel and Q. H. Tran, A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline,, \emph{SIAM J. Sci. Comput.}, 27 (2005), 914.  doi: 10.1137/030601624.  Google Scholar

[3]

C. E. Brennen, Fundamentals of Multiphase Flow,, Cambridge University Press, (2005).   Google Scholar

[4]

C. H. Chang and M. S. Lion, A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and $AUSM^{+}$-up scheme,, \emph{J. Comput. Phys.}, 225 (2007), 840.  doi: 10.1016/j.jcp.2007.01.007.  Google Scholar

[5]

J. Cortes, A. Debussche and I. Toumi, A density perturbation method to study the eigenstructure of two-phase flow equation systems,, \emph{J. Comput. Phys.}, 147 (1998), 463.  doi: 10.1006/jcph.1998.6096.  Google Scholar

[6]

J. M. Delhaye, M. Giot and M. L. Riethmuller, Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering,, Von Karman Institute, (1981).   Google Scholar

[7]

R. J. Duan and H. F. Ma, Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity,, \emph{Indiana Univ. Math. J.}, 5 (2008), 2299.  doi: 10.1512/iumj.2008.57.3326.  Google Scholar

[8]

S. Evje and K. K. Fjelde, On a rough AUSM scheme for a one dimensional two-phase model,, \emph{Comput. Fluids}, 32 (2003), 1497.  doi: 10.1016/S0045-7930(02)00113-5.  Google Scholar

[9]

S. Evje and T. Flåtten, On the wave structure of two-phase flow models,, \emph{SIAM J. Appl. Math.}, 67 (2006), 487.  doi: 10.1137/050633482.  Google Scholar

[10]

S. Evje, T. Flåtten and H. A. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum,, \emph{Nonlinear Anal.}, 70 (2009), 3864.  doi: 10.1016/j.na.2008.07.043.  Google Scholar

[11]

S. Evje and K. H. Karlsen, Global existence of weak solutions for a viscous two-phase model,, \emph{J. Differential Equations}, 245 (2008), 2660.  doi: 10.1016/j.jde.2007.10.032.  Google Scholar

[12]

S. Evje and K. H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law,, \emph{Commun. Pure Appl.Anal.}, 8 (2009), 1867.  doi: 10.3934/cpaa.2009.8.1867.  Google Scholar

[13]

S. Evje, Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells,, \emph{SIAM J. Math. Anal.}, 43 (2011), 1887.  doi: 10.1137/100813932.  Google Scholar

[14]

S. Evje, Global weak solutions for a compressible gas-liquid model with well-formation interaction,, \emph{J. Differential Equations}, 251 (2011), 2352.  doi: 10.1016/j.jde.2011.07.013.  Google Scholar

[15]

S. Evje, Q. Q. Liu and C. J. Zhu, Asymptotic stability of the compressible gas-liquid model with well-formation interaction and gravity,, \emph{J. Differential Equations}, 257 (2014), 3226.  doi: 10.1016/j.jde.2014.06.012.  Google Scholar

[16]

L. Fan, Q. Q. Liu and C. J. Zhu, Convergence rates to stationary solutions of a gas-liquid model with external forces,, \emph{Nonlinearity}, 27 (2012), 2875.  doi: 10.1088/0951-7715/25/10/2875.  Google Scholar

[17]

T. Flåtten and S. T. Munkejord, The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model,, \emph{ESAIM: Math. Mod. Num. Anal.}, 40 (2006), 735.  doi: 10.1051/m2an:2006032.  Google Scholar

[18]

H. A. Friis and S. Evje, Asymptotic behavior of a compressible two-phase model with well-formation interaction,, \emph{J. Differential Equations}, 254 (2013), 3957.  doi: 10.1016/j.jde.2013.02.001.  Google Scholar

[19]

C. C. Hao and H. L. Li, Well-posedness for a multidimensional viscous liquid-gas two-phase flow model,, \emph{SIAM J. Math. Anal.}, 44 (2012), 1304.  doi: 10.1137/110851602.  Google Scholar

[20]

M. Ishii and T. Hibiki, Thermo-fluid Dynamics of Two-Phase Flow,, Springer-Verlag, (2006).  doi: 10.1007/978-0-387-29187-1.  Google Scholar

[21]

Y. Kagei and S. Kawashima, Stability of planar stationary solutions to the compressible Navier-Stokes equation on the half space,, \emph{Comm. Math. Phys.}, 266 (2006), 401.  doi: 10.1007/s00220-006-0017-1.  Google Scholar

[22]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, \emph{Comm. Math. Phys.}, 101 (1985), 97.  doi: 0624.76095.  Google Scholar

[23]

S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space,, \emph{Comm. Math. Phys.}, 240 (2003), 483.  doi: 10.1007/s00220-003-0909-2.  Google Scholar

[24]

N. I. Kolev, Multiphase Flow Dynamics,, Vol. 1. Fundamentals, (2005).   Google Scholar

[25]

N. I. Kolev, Multiphase Flow Dynamics,, Vol. 2. Thermal and Mechanical Interactions, (2005).   Google Scholar

[26]

Q. Q. Liu and C. J. Zhu, Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum,, \emph{J. Differential Equations}, 252 (2012), 2492.  doi: 10.1016/j.jde.2011.10.018.  Google Scholar

[27]

R. J. Lorentzen and K. K. Fjelde, Use of slopelimiter techniques in traditional numerical methods for multi-phase flow in pipelines and wells,, \emph{Int. J. Numer. Meth. Fluids}, 48 (2005), 723.   Google Scholar

[28]

A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids,, \emph{Comm. Math. Phys.}, 89 (1983), 445.  doi: 0543.76099.  Google Scholar

[29]

T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line,, \emph{J. Differential Equations}, 241 (2007), 94.  doi: 10.1016/j.jde.2007.06.016.  Google Scholar

[30]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, \emph{Funkcial. Ekvac.}, 41 (1998), 107.   Google Scholar

[31]

A. Prosperetti and G. Tryggvason (Editors), Computational Methods for Multiphase Flow,, Cambridge University Press, (2007).   Google Scholar

[32]

H. Y. Wen, L. Yao and C. J. Zhu, A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum,, \emph{J. Math. Pures Appl.}, 97 (2012), 204.  doi: 10.1016/j.matpur.2011.09.005.  Google Scholar

[33]

L. Yao, T. Zhang and C. J. Zhu, Existence of asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model,, \emph{SIAM J. Math. Anal.}, 42 (2010), 1874.  doi: 10.1137/100785302.  Google Scholar

[34]

L. Yao, T. Zhang and C. J. Zhu, A blow-up criterion for a 2D viscous liquid-gas two-phase flow model,, \emph{J. Differential Equations}, 250 (2011), 3362.  doi: 10.1016/j.jde.2010.12.006.  Google Scholar

[35]

L. Yao and C. J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity,, \emph{J. Differential Equations}, 247 (2009), 2705.  doi: 10.1016/j.jde.2009.07.013.  Google Scholar

[36]

L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum,, \emph{Math. Ann.}, 349 (2011), 903.  doi: 10.1007/s00208-010-0544-0.  Google Scholar

[37]

Y. H. Zhang and C. J. Zhu, Global existence and optimal convergence rate for the strong solutions in $H^{2}$ to the 3D viscous liquid-gas two-phase flow model,, preprint., ().   Google Scholar

show all references

References:
[1]

M. Baudin, C. Berthon, F. Coquel, R. Masson and Q. H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law,, \emph{Numer. Math.}, 99 (2005), 411.  doi: 10.1007/s00211-004-0558-1.  Google Scholar

[2]

M. Baudin, F. Coquel and Q. H. Tran, A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline,, \emph{SIAM J. Sci. Comput.}, 27 (2005), 914.  doi: 10.1137/030601624.  Google Scholar

[3]

C. E. Brennen, Fundamentals of Multiphase Flow,, Cambridge University Press, (2005).   Google Scholar

[4]

C. H. Chang and M. S. Lion, A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and $AUSM^{+}$-up scheme,, \emph{J. Comput. Phys.}, 225 (2007), 840.  doi: 10.1016/j.jcp.2007.01.007.  Google Scholar

[5]

J. Cortes, A. Debussche and I. Toumi, A density perturbation method to study the eigenstructure of two-phase flow equation systems,, \emph{J. Comput. Phys.}, 147 (1998), 463.  doi: 10.1006/jcph.1998.6096.  Google Scholar

[6]

J. M. Delhaye, M. Giot and M. L. Riethmuller, Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering,, Von Karman Institute, (1981).   Google Scholar

[7]

R. J. Duan and H. F. Ma, Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity,, \emph{Indiana Univ. Math. J.}, 5 (2008), 2299.  doi: 10.1512/iumj.2008.57.3326.  Google Scholar

[8]

S. Evje and K. K. Fjelde, On a rough AUSM scheme for a one dimensional two-phase model,, \emph{Comput. Fluids}, 32 (2003), 1497.  doi: 10.1016/S0045-7930(02)00113-5.  Google Scholar

[9]

S. Evje and T. Flåtten, On the wave structure of two-phase flow models,, \emph{SIAM J. Appl. Math.}, 67 (2006), 487.  doi: 10.1137/050633482.  Google Scholar

[10]

S. Evje, T. Flåtten and H. A. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum,, \emph{Nonlinear Anal.}, 70 (2009), 3864.  doi: 10.1016/j.na.2008.07.043.  Google Scholar

[11]

S. Evje and K. H. Karlsen, Global existence of weak solutions for a viscous two-phase model,, \emph{J. Differential Equations}, 245 (2008), 2660.  doi: 10.1016/j.jde.2007.10.032.  Google Scholar

[12]

S. Evje and K. H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law,, \emph{Commun. Pure Appl.Anal.}, 8 (2009), 1867.  doi: 10.3934/cpaa.2009.8.1867.  Google Scholar

[13]

S. Evje, Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells,, \emph{SIAM J. Math. Anal.}, 43 (2011), 1887.  doi: 10.1137/100813932.  Google Scholar

[14]

S. Evje, Global weak solutions for a compressible gas-liquid model with well-formation interaction,, \emph{J. Differential Equations}, 251 (2011), 2352.  doi: 10.1016/j.jde.2011.07.013.  Google Scholar

[15]

S. Evje, Q. Q. Liu and C. J. Zhu, Asymptotic stability of the compressible gas-liquid model with well-formation interaction and gravity,, \emph{J. Differential Equations}, 257 (2014), 3226.  doi: 10.1016/j.jde.2014.06.012.  Google Scholar

[16]

L. Fan, Q. Q. Liu and C. J. Zhu, Convergence rates to stationary solutions of a gas-liquid model with external forces,, \emph{Nonlinearity}, 27 (2012), 2875.  doi: 10.1088/0951-7715/25/10/2875.  Google Scholar

[17]

T. Flåtten and S. T. Munkejord, The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model,, \emph{ESAIM: Math. Mod. Num. Anal.}, 40 (2006), 735.  doi: 10.1051/m2an:2006032.  Google Scholar

[18]

H. A. Friis and S. Evje, Asymptotic behavior of a compressible two-phase model with well-formation interaction,, \emph{J. Differential Equations}, 254 (2013), 3957.  doi: 10.1016/j.jde.2013.02.001.  Google Scholar

[19]

C. C. Hao and H. L. Li, Well-posedness for a multidimensional viscous liquid-gas two-phase flow model,, \emph{SIAM J. Math. Anal.}, 44 (2012), 1304.  doi: 10.1137/110851602.  Google Scholar

[20]

M. Ishii and T. Hibiki, Thermo-fluid Dynamics of Two-Phase Flow,, Springer-Verlag, (2006).  doi: 10.1007/978-0-387-29187-1.  Google Scholar

[21]

Y. Kagei and S. Kawashima, Stability of planar stationary solutions to the compressible Navier-Stokes equation on the half space,, \emph{Comm. Math. Phys.}, 266 (2006), 401.  doi: 10.1007/s00220-006-0017-1.  Google Scholar

[22]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, \emph{Comm. Math. Phys.}, 101 (1985), 97.  doi: 0624.76095.  Google Scholar

[23]

S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space,, \emph{Comm. Math. Phys.}, 240 (2003), 483.  doi: 10.1007/s00220-003-0909-2.  Google Scholar

[24]

N. I. Kolev, Multiphase Flow Dynamics,, Vol. 1. Fundamentals, (2005).   Google Scholar

[25]

N. I. Kolev, Multiphase Flow Dynamics,, Vol. 2. Thermal and Mechanical Interactions, (2005).   Google Scholar

[26]

Q. Q. Liu and C. J. Zhu, Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum,, \emph{J. Differential Equations}, 252 (2012), 2492.  doi: 10.1016/j.jde.2011.10.018.  Google Scholar

[27]

R. J. Lorentzen and K. K. Fjelde, Use of slopelimiter techniques in traditional numerical methods for multi-phase flow in pipelines and wells,, \emph{Int. J. Numer. Meth. Fluids}, 48 (2005), 723.   Google Scholar

[28]

A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids,, \emph{Comm. Math. Phys.}, 89 (1983), 445.  doi: 0543.76099.  Google Scholar

[29]

T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line,, \emph{J. Differential Equations}, 241 (2007), 94.  doi: 10.1016/j.jde.2007.06.016.  Google Scholar

[30]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, \emph{Funkcial. Ekvac.}, 41 (1998), 107.   Google Scholar

[31]

A. Prosperetti and G. Tryggvason (Editors), Computational Methods for Multiphase Flow,, Cambridge University Press, (2007).   Google Scholar

[32]

H. Y. Wen, L. Yao and C. J. Zhu, A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum,, \emph{J. Math. Pures Appl.}, 97 (2012), 204.  doi: 10.1016/j.matpur.2011.09.005.  Google Scholar

[33]

L. Yao, T. Zhang and C. J. Zhu, Existence of asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model,, \emph{SIAM J. Math. Anal.}, 42 (2010), 1874.  doi: 10.1137/100785302.  Google Scholar

[34]

L. Yao, T. Zhang and C. J. Zhu, A blow-up criterion for a 2D viscous liquid-gas two-phase flow model,, \emph{J. Differential Equations}, 250 (2011), 3362.  doi: 10.1016/j.jde.2010.12.006.  Google Scholar

[35]

L. Yao and C. J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity,, \emph{J. Differential Equations}, 247 (2009), 2705.  doi: 10.1016/j.jde.2009.07.013.  Google Scholar

[36]

L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum,, \emph{Math. Ann.}, 349 (2011), 903.  doi: 10.1007/s00208-010-0544-0.  Google Scholar

[37]

Y. H. Zhang and C. J. Zhu, Global existence and optimal convergence rate for the strong solutions in $H^{2}$ to the 3D viscous liquid-gas two-phase flow model,, preprint., ().   Google Scholar

[1]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[2]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[3]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[4]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[5]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[6]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[7]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

[8]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[9]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[10]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[11]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[12]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[13]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[14]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[15]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[17]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[18]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[19]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[20]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]