September  2015, 14(5): 2021-2042. doi: 10.3934/cpaa.2015.14.2021

Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

2. 

School of Mathematics, South China University of Technology, Guangzhou 510641, China

Received  September 2014 Revised  January 2015 Published  June 2015

In this paper we study an asymptotic behavior of a solution to the initial boundary value problem for a viscous liquid-gas two-phase flow model in a half line $R_+:=(0,\infty).$ Our idea mainly comes from [23] and [29] which describe an isothermal Navier-Stokes equation in a half line. We obtain the convergence rate of the time global solution towards corresponding stationary solution in Eulerian coordinates. Precisely, if an initial perturbation decays with the algebraic or the exponential rate in space, the solution converges to the corresponding stationary solution as time tends to infinity with the algebraic or the exponential rate in time. These theorems are proved by a weighted energy method.
Citation: Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2021-2042. doi: 10.3934/cpaa.2015.14.2021
References:
[1]

M. Baudin, C. Berthon, F. Coquel, R. Masson and Q. H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law, Numer. Math., 99 (2005), 411-440. doi: 10.1007/s00211-004-0558-1.

[2]

M. Baudin, F. Coquel and Q. H. Tran, A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline, SIAM J. Sci. Comput., 27 (2005), 914-936. doi: 10.1137/030601624.

[3]

C. E. Brennen, Fundamentals of Multiphase Flow, Cambridge University Press, New York, 2005.

[4]

C. H. Chang and M. S. Lion, A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and $AUSM^{+}$-up scheme, J. Comput. Phys., 225 (2007), 840-873. doi: 10.1016/j.jcp.2007.01.007.

[5]

J. Cortes, A. Debussche and I. Toumi, A density perturbation method to study the eigenstructure of two-phase flow equation systems, J. Comput. Phys., 147 (1998), 463-484. doi: 10.1006/jcph.1998.6096.

[6]

J. M. Delhaye, M. Giot and M. L. Riethmuller, Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering, Von Karman Institute, McGraw-Hill, New York, 1981.

[7]

R. J. Duan and H. F. Ma, Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity, Indiana Univ. Math. J., 5 (2008), 2299-2319. doi: 10.1512/iumj.2008.57.3326.

[8]

S. Evje and K. K. Fjelde, On a rough AUSM scheme for a one dimensional two-phase model, Comput. Fluids, 32 (2003), 1497-1530. doi: 10.1016/S0045-7930(02)00113-5.

[9]

S. Evje and T. Flåtten, On the wave structure of two-phase flow models, SIAM J. Appl. Math., 67 (2006), 487-511. doi: 10.1137/050633482.

[10]

S. Evje, T. Flåtten and H. A. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum, Nonlinear Anal., 70 (2009), 3864-3886. doi: 10.1016/j.na.2008.07.043.

[11]

S. Evje and K. H. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Differential Equations, 245 (2008), 2660-2703. doi: 10.1016/j.jde.2007.10.032.

[12]

S. Evje and K. H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, Commun. Pure Appl.Anal., 8 (2009), 1867-1894. doi: 10.3934/cpaa.2009.8.1867.

[13]

S. Evje, Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells, SIAM J. Math. Anal., 43 (2011), 1887-1922. doi: 10.1137/100813932.

[14]

S. Evje, Global weak solutions for a compressible gas-liquid model with well-formation interaction, J. Differential Equations, 251 (2011), 2352-2386. doi: 10.1016/j.jde.2011.07.013.

[15]

S. Evje, Q. Q. Liu and C. J. Zhu, Asymptotic stability of the compressible gas-liquid model with well-formation interaction and gravity, J. Differential Equations, 257 (2014), 3226-3271. doi: 10.1016/j.jde.2014.06.012.

[16]

L. Fan, Q. Q. Liu and C. J. Zhu, Convergence rates to stationary solutions of a gas-liquid model with external forces, Nonlinearity, 27 (2012), 2875-2901. doi: 10.1088/0951-7715/25/10/2875.

[17]

T. Flåtten and S. T. Munkejord, The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model, ESAIM: Math. Mod. Num. Anal., 40 (2006), 735-764. doi: 10.1051/m2an:2006032.

[18]

H. A. Friis and S. Evje, Asymptotic behavior of a compressible two-phase model with well-formation interaction, J. Differential Equations, 254 (2013), 3957-3993. doi: 10.1016/j.jde.2013.02.001.

[19]

C. C. Hao and H. L. Li, Well-posedness for a multidimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 1304-1332. doi: 10.1137/110851602.

[20]

M. Ishii and T. Hibiki, Thermo-fluid Dynamics of Two-Phase Flow, Springer-Verlag, New York, 2006. doi: 10.1007/978-0-387-29187-1.

[21]

Y. Kagei and S. Kawashima, Stability of planar stationary solutions to the compressible Navier-Stokes equation on the half space, Comm. Math. Phys., 266 (2006), 401-430. doi: 10.1007/s00220-006-0017-1.

[22]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Comm. Math. Phys., 101 (1985), 97-127. doi: 0624.76095.

[23]

S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys., 240 (2003), 483-500. doi: 10.1007/s00220-003-0909-2.

[24]

N. I. Kolev, Multiphase Flow Dynamics, Vol. 1. Fundamentals, Springer-Verlag, Berlin, 2005.

[25]

N. I. Kolev, Multiphase Flow Dynamics, Vol. 2. Thermal and Mechanical Interactions, Springer-Verlag, Berlin, 2005.

[26]

Q. Q. Liu and C. J. Zhu, Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum, J. Differential Equations, 252 (2012), 2492-2519. doi: 10.1016/j.jde.2011.10.018.

[27]

R. J. Lorentzen and K. K. Fjelde, Use of slopelimiter techniques in traditional numerical methods for multi-phase flow in pipelines and wells, Int. J. Numer. Meth. Fluids, 48 (2005), 723-745.

[28]

A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445-464. doi: 0543.76099.

[29]

T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line, J. Differential Equations, 241 (2007), 94-111. doi: 10.1016/j.jde.2007.06.016.

[30]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws, Funkcial. Ekvac., 41 (1998), 107-132.

[31]

A. Prosperetti and G. Tryggvason (Editors), Computational Methods for Multiphase Flow, Cambridge University Press, New York, 2007.

[32]

H. Y. Wen, L. Yao and C. J. Zhu, A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum, J. Math. Pures Appl., 97 (2012), 204-229. doi: 10.1016/j.matpur.2011.09.005.

[33]

L. Yao, T. Zhang and C. J. Zhu, Existence of asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 42 (2010), 1874-1897. doi: 10.1137/100785302.

[34]

L. Yao, T. Zhang and C. J. Zhu, A blow-up criterion for a 2D viscous liquid-gas two-phase flow model, J. Differential Equations, 250 (2011), 3362-3378. doi: 10.1016/j.jde.2010.12.006.

[35]

L. Yao and C. J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity, J. Differential Equations, 247 (2009), 2705-2739. doi: 10.1016/j.jde.2009.07.013.

[36]

L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2011), 903-928. doi: 10.1007/s00208-010-0544-0.

[37]

Y. H. Zhang and C. J. Zhu, Global existence and optimal convergence rate for the strong solutions in $H^{2}$ to the 3D viscous liquid-gas two-phase flow model, preprint.

show all references

References:
[1]

M. Baudin, C. Berthon, F. Coquel, R. Masson and Q. H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law, Numer. Math., 99 (2005), 411-440. doi: 10.1007/s00211-004-0558-1.

[2]

M. Baudin, F. Coquel and Q. H. Tran, A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline, SIAM J. Sci. Comput., 27 (2005), 914-936. doi: 10.1137/030601624.

[3]

C. E. Brennen, Fundamentals of Multiphase Flow, Cambridge University Press, New York, 2005.

[4]

C. H. Chang and M. S. Lion, A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and $AUSM^{+}$-up scheme, J. Comput. Phys., 225 (2007), 840-873. doi: 10.1016/j.jcp.2007.01.007.

[5]

J. Cortes, A. Debussche and I. Toumi, A density perturbation method to study the eigenstructure of two-phase flow equation systems, J. Comput. Phys., 147 (1998), 463-484. doi: 10.1006/jcph.1998.6096.

[6]

J. M. Delhaye, M. Giot and M. L. Riethmuller, Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering, Von Karman Institute, McGraw-Hill, New York, 1981.

[7]

R. J. Duan and H. F. Ma, Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity, Indiana Univ. Math. J., 5 (2008), 2299-2319. doi: 10.1512/iumj.2008.57.3326.

[8]

S. Evje and K. K. Fjelde, On a rough AUSM scheme for a one dimensional two-phase model, Comput. Fluids, 32 (2003), 1497-1530. doi: 10.1016/S0045-7930(02)00113-5.

[9]

S. Evje and T. Flåtten, On the wave structure of two-phase flow models, SIAM J. Appl. Math., 67 (2006), 487-511. doi: 10.1137/050633482.

[10]

S. Evje, T. Flåtten and H. A. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum, Nonlinear Anal., 70 (2009), 3864-3886. doi: 10.1016/j.na.2008.07.043.

[11]

S. Evje and K. H. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Differential Equations, 245 (2008), 2660-2703. doi: 10.1016/j.jde.2007.10.032.

[12]

S. Evje and K. H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, Commun. Pure Appl.Anal., 8 (2009), 1867-1894. doi: 10.3934/cpaa.2009.8.1867.

[13]

S. Evje, Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells, SIAM J. Math. Anal., 43 (2011), 1887-1922. doi: 10.1137/100813932.

[14]

S. Evje, Global weak solutions for a compressible gas-liquid model with well-formation interaction, J. Differential Equations, 251 (2011), 2352-2386. doi: 10.1016/j.jde.2011.07.013.

[15]

S. Evje, Q. Q. Liu and C. J. Zhu, Asymptotic stability of the compressible gas-liquid model with well-formation interaction and gravity, J. Differential Equations, 257 (2014), 3226-3271. doi: 10.1016/j.jde.2014.06.012.

[16]

L. Fan, Q. Q. Liu and C. J. Zhu, Convergence rates to stationary solutions of a gas-liquid model with external forces, Nonlinearity, 27 (2012), 2875-2901. doi: 10.1088/0951-7715/25/10/2875.

[17]

T. Flåtten and S. T. Munkejord, The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model, ESAIM: Math. Mod. Num. Anal., 40 (2006), 735-764. doi: 10.1051/m2an:2006032.

[18]

H. A. Friis and S. Evje, Asymptotic behavior of a compressible two-phase model with well-formation interaction, J. Differential Equations, 254 (2013), 3957-3993. doi: 10.1016/j.jde.2013.02.001.

[19]

C. C. Hao and H. L. Li, Well-posedness for a multidimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 1304-1332. doi: 10.1137/110851602.

[20]

M. Ishii and T. Hibiki, Thermo-fluid Dynamics of Two-Phase Flow, Springer-Verlag, New York, 2006. doi: 10.1007/978-0-387-29187-1.

[21]

Y. Kagei and S. Kawashima, Stability of planar stationary solutions to the compressible Navier-Stokes equation on the half space, Comm. Math. Phys., 266 (2006), 401-430. doi: 10.1007/s00220-006-0017-1.

[22]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Comm. Math. Phys., 101 (1985), 97-127. doi: 0624.76095.

[23]

S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys., 240 (2003), 483-500. doi: 10.1007/s00220-003-0909-2.

[24]

N. I. Kolev, Multiphase Flow Dynamics, Vol. 1. Fundamentals, Springer-Verlag, Berlin, 2005.

[25]

N. I. Kolev, Multiphase Flow Dynamics, Vol. 2. Thermal and Mechanical Interactions, Springer-Verlag, Berlin, 2005.

[26]

Q. Q. Liu and C. J. Zhu, Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum, J. Differential Equations, 252 (2012), 2492-2519. doi: 10.1016/j.jde.2011.10.018.

[27]

R. J. Lorentzen and K. K. Fjelde, Use of slopelimiter techniques in traditional numerical methods for multi-phase flow in pipelines and wells, Int. J. Numer. Meth. Fluids, 48 (2005), 723-745.

[28]

A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445-464. doi: 0543.76099.

[29]

T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line, J. Differential Equations, 241 (2007), 94-111. doi: 10.1016/j.jde.2007.06.016.

[30]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws, Funkcial. Ekvac., 41 (1998), 107-132.

[31]

A. Prosperetti and G. Tryggvason (Editors), Computational Methods for Multiphase Flow, Cambridge University Press, New York, 2007.

[32]

H. Y. Wen, L. Yao and C. J. Zhu, A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum, J. Math. Pures Appl., 97 (2012), 204-229. doi: 10.1016/j.matpur.2011.09.005.

[33]

L. Yao, T. Zhang and C. J. Zhu, Existence of asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 42 (2010), 1874-1897. doi: 10.1137/100785302.

[34]

L. Yao, T. Zhang and C. J. Zhu, A blow-up criterion for a 2D viscous liquid-gas two-phase flow model, J. Differential Equations, 250 (2011), 3362-3378. doi: 10.1016/j.jde.2010.12.006.

[35]

L. Yao and C. J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity, J. Differential Equations, 247 (2009), 2705-2739. doi: 10.1016/j.jde.2009.07.013.

[36]

L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2011), 903-928. doi: 10.1007/s00208-010-0544-0.

[37]

Y. H. Zhang and C. J. Zhu, Global existence and optimal convergence rate for the strong solutions in $H^{2}$ to the 3D viscous liquid-gas two-phase flow model, preprint.

[1]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[2]

Yingshan Chen, Mei Zhang. A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions. Kinetic and Related Models, 2016, 9 (3) : 429-441. doi: 10.3934/krm.2016001

[3]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

[4]

Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146

[5]

Steinar Evje, Kenneth Hvistendahl Karlsen. Global weak solutions for a viscous liquid-gas model with singular pressure law. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1867-1894. doi: 10.3934/cpaa.2009.8.1867

[6]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[7]

Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016

[8]

Helmut Abels, Yutaka Terasawa. Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched densities. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1871-1881. doi: 10.3934/dcdss.2022117

[9]

Dongfen Bian. Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1591-1611. doi: 10.3934/dcdss.2016065

[10]

Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115

[11]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[12]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[13]

Zhen Cheng, Wenjun Wang. The Cauchy problem of a two-phase flow model for a mixture of non-interacting compressible fluids. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4155-4176. doi: 10.3934/cpaa.2021151

[14]

Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090

[15]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[16]

Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198

[17]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[18]

Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks and Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020

[19]

Feng Ma, Mingfang Ni. A two-phase method for multidimensional number partitioning problem. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 203-206. doi: 10.3934/naco.2013.3.203

[20]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]