• Previous Article
    Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions
  • CPAA Home
  • This Issue
  • Next Article
    Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line
September  2015, 14(5): 2043-2067. doi: 10.3934/cpaa.2015.14.2043

A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains

1. 

University of Puerto Rico, Rio Piedras Campus, Department of Mathematics, P.O. Box 70377, San Juan PR 00936-8377

Received  January 2015 Revised  April 2015 Published  June 2015

Let $\Omega\subset R^N$ be a bounded open set with Lipschitz continuous boundary $\partial \Omega$. We define a fractional Dirichlet-to-Neumann operator and prove that it generates a strongly continuous analytic and compact semigroup on $L^2(\partial \Omega)$ which can also be ultracontractive. We also use the fractional Dirichlet-to-Neumann operator to compare the eigenvalues of a realization in $L^2(\Omega)$ of the fractional Laplace operator with Dirichlet boundary condition and the regional fractional Laplacian with the fractional Neumann boundary conditions.
Citation: Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043
References:
[1]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, Grundlehren der Mathematischen Wissenschaften \textbf{314}, 314 (1996).  doi: 10.1007/978-3-662-03282-4.  Google Scholar

[2]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems,, Second edition. Monographs in Mathematics \textbf{96}, 96 (2011).  doi: 10.1007/978-3-0348-0087-7.  Google Scholar

[3]

W. Arendt and R. Mazzeo, Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup,, \emph{Commun. Pure Appl. Anal.}, 11 (2012), 2201.  doi: 10.3934/cpaa.2012.11.2201.  Google Scholar

[4]

W. Arendt and A. F. M. ter Elst, The Dirichlet-to-Neumann operator on rough domains,, \emph{J. Differential Equations}, 251 (2011), 2100.  doi: 10.1016/j.jde.2011.06.017.  Google Scholar

[5]

W. Arendt, A. F. M. ter Elst, J. B. Kennedy and M. Sauter, The Dirichlet-to-Neumann operator via hidden compactness,, \emph{J. Funct. Anal.}, 266 (2014), 1757.  doi: 10.1016/j.jfa.2013.09.012.  Google Scholar

[6]

K. Bogdan, K. Burdzy and Z. Q. Chen, Censored stable processes,, \emph{Probab. Theory Related Fields}, 127 (2003), 89.  doi: 10.1007/s00440-003-0275-1.  Google Scholar

[7]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011).   Google Scholar

[8]

L. Caffarelli, J-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian,, \emph{J. Eur. Math. Soc.}, 12 (2010), 1151.  doi: 10.4171/JEMS/226.  Google Scholar

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[10]

D. Danielli, N. Garofalo and D-M. Nhieu, Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces,, \emph{Mem. Amer. Math. Soc.}, 182 (2006).  doi: 10.1090/memo/0857.  Google Scholar

[11]

D. Daners, Dirichlet problems on varying domains,, \emph{J. Differential Equations}, 188 (2003), 591.  doi: 10.1016/S0022-0396(02)00105-5.  Google Scholar

[12]

D. Daners, Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator,, \emph{Positivity}, 18 (2014), 235.  doi: 10.1007/s11117-013-0243-7.  Google Scholar

[13]

E. B. Davies, Heat Kernels and Spectral Theory,, Cambridge University Press, (1989).  doi: 10.1017/CBO9780511566158.  Google Scholar

[14]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bull. Sci. Math.}, 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[15]

Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws,, \emph{Math. Models Methods Appl. Sci.}, 23 (2013), 493.  doi: 10.1142/S0218202512500546.  Google Scholar

[16]

L. Friedlander, Some inequalities between Dirichlet and Neumann eigenvalues,, \emph{Arch. Rational Mech. Anal.}, 116 (1991), 153.  doi: 10.1007/BF00375590.  Google Scholar

[17]

H. Gimperlein and G. Grubb, Heat kernel estimates for pseudodifferential operators, fractional Laplacians and Dirichlet-to-Neumann operators,, \emph{J. Evol. Equ.}, 14 (2014), 49.  doi: 10.1007/s00028-013-0206-2.  Google Scholar

[18]

Q. Y. Guan, Integration by parts formula for regional fractional Laplacian,, \emph{Comm. Math. Phys.}, 266 (2006), 289.  doi: 10.1007/s00220-006-0054-9.  Google Scholar

[19]

Q. Y. Guan and Z. M. Ma, Boundary problems for fractional Laplacians,, \emph{Stoch. Dyn.}, 5 (2005), 385.  doi: 10.1142/S021949370500150X.  Google Scholar

[20]

W. Hoh and J. Jacob, On the Dirichlet problem for pseudodifferential operators generating Feller semigroups,, \emph{J. Funct. Anal.}, 137 (1996), 19.  doi: 10.1006/jfan.1996.0039.  Google Scholar

[21]

T. Kato, Perturbation Theory for Linear Operators,, Springer Berlin, (1966).   Google Scholar

[22]

E. M. Ouhabaz, Analysis of Heat Equations on Domains,, London Mathematical Society Monographs Series \textbf{31}, 31 (2005).   Google Scholar

[23]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary,, \emph{J. Math. Pures Appl.}, 101 (2014), 275.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[24]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 2105.   Google Scholar

[25]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 144 (2014), 831.  doi: 10.1017/S0308210512001783.  Google Scholar

[26]

A. F. M. ter Elst and E. M. Ouhabaz, Analysis of the heat kernel of the Dirichlet-to-Neumann operator,, \emph{J. Funct. Anal.}, 267 (2014), 4066.  doi: 10.1016/j.jfa.2014.09.001.  Google Scholar

[27]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets,, \emph{Potential Anal.}, 42 (2015), 499.  doi: 10.1007/s11118-014-9443-4.  Google Scholar

show all references

References:
[1]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, Grundlehren der Mathematischen Wissenschaften \textbf{314}, 314 (1996).  doi: 10.1007/978-3-662-03282-4.  Google Scholar

[2]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems,, Second edition. Monographs in Mathematics \textbf{96}, 96 (2011).  doi: 10.1007/978-3-0348-0087-7.  Google Scholar

[3]

W. Arendt and R. Mazzeo, Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup,, \emph{Commun. Pure Appl. Anal.}, 11 (2012), 2201.  doi: 10.3934/cpaa.2012.11.2201.  Google Scholar

[4]

W. Arendt and A. F. M. ter Elst, The Dirichlet-to-Neumann operator on rough domains,, \emph{J. Differential Equations}, 251 (2011), 2100.  doi: 10.1016/j.jde.2011.06.017.  Google Scholar

[5]

W. Arendt, A. F. M. ter Elst, J. B. Kennedy and M. Sauter, The Dirichlet-to-Neumann operator via hidden compactness,, \emph{J. Funct. Anal.}, 266 (2014), 1757.  doi: 10.1016/j.jfa.2013.09.012.  Google Scholar

[6]

K. Bogdan, K. Burdzy and Z. Q. Chen, Censored stable processes,, \emph{Probab. Theory Related Fields}, 127 (2003), 89.  doi: 10.1007/s00440-003-0275-1.  Google Scholar

[7]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011).   Google Scholar

[8]

L. Caffarelli, J-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian,, \emph{J. Eur. Math. Soc.}, 12 (2010), 1151.  doi: 10.4171/JEMS/226.  Google Scholar

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[10]

D. Danielli, N. Garofalo and D-M. Nhieu, Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces,, \emph{Mem. Amer. Math. Soc.}, 182 (2006).  doi: 10.1090/memo/0857.  Google Scholar

[11]

D. Daners, Dirichlet problems on varying domains,, \emph{J. Differential Equations}, 188 (2003), 591.  doi: 10.1016/S0022-0396(02)00105-5.  Google Scholar

[12]

D. Daners, Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator,, \emph{Positivity}, 18 (2014), 235.  doi: 10.1007/s11117-013-0243-7.  Google Scholar

[13]

E. B. Davies, Heat Kernels and Spectral Theory,, Cambridge University Press, (1989).  doi: 10.1017/CBO9780511566158.  Google Scholar

[14]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bull. Sci. Math.}, 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[15]

Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws,, \emph{Math. Models Methods Appl. Sci.}, 23 (2013), 493.  doi: 10.1142/S0218202512500546.  Google Scholar

[16]

L. Friedlander, Some inequalities between Dirichlet and Neumann eigenvalues,, \emph{Arch. Rational Mech. Anal.}, 116 (1991), 153.  doi: 10.1007/BF00375590.  Google Scholar

[17]

H. Gimperlein and G. Grubb, Heat kernel estimates for pseudodifferential operators, fractional Laplacians and Dirichlet-to-Neumann operators,, \emph{J. Evol. Equ.}, 14 (2014), 49.  doi: 10.1007/s00028-013-0206-2.  Google Scholar

[18]

Q. Y. Guan, Integration by parts formula for regional fractional Laplacian,, \emph{Comm. Math. Phys.}, 266 (2006), 289.  doi: 10.1007/s00220-006-0054-9.  Google Scholar

[19]

Q. Y. Guan and Z. M. Ma, Boundary problems for fractional Laplacians,, \emph{Stoch. Dyn.}, 5 (2005), 385.  doi: 10.1142/S021949370500150X.  Google Scholar

[20]

W. Hoh and J. Jacob, On the Dirichlet problem for pseudodifferential operators generating Feller semigroups,, \emph{J. Funct. Anal.}, 137 (1996), 19.  doi: 10.1006/jfan.1996.0039.  Google Scholar

[21]

T. Kato, Perturbation Theory for Linear Operators,, Springer Berlin, (1966).   Google Scholar

[22]

E. M. Ouhabaz, Analysis of Heat Equations on Domains,, London Mathematical Society Monographs Series \textbf{31}, 31 (2005).   Google Scholar

[23]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary,, \emph{J. Math. Pures Appl.}, 101 (2014), 275.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[24]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 2105.   Google Scholar

[25]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 144 (2014), 831.  doi: 10.1017/S0308210512001783.  Google Scholar

[26]

A. F. M. ter Elst and E. M. Ouhabaz, Analysis of the heat kernel of the Dirichlet-to-Neumann operator,, \emph{J. Funct. Anal.}, 267 (2014), 4066.  doi: 10.1016/j.jfa.2014.09.001.  Google Scholar

[27]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets,, \emph{Potential Anal.}, 42 (2015), 499.  doi: 10.1007/s11118-014-9443-4.  Google Scholar

[1]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[4]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[5]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[6]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[9]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[10]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[11]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[12]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[15]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[16]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[17]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[18]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[19]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[20]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (222)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]