September  2015, 14(5): 2095-2115. doi: 10.3934/cpaa.2015.14.2095

A nonlocal diffusion population model with age structure and Dirichlet boundary condition

1. 

School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, 510006, China

2. 

Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States

Received  February 2014 Revised  August 2014 Published  June 2015

In this paper, we study the global dynamics of a population model with age structure. The model is given by a nonlocal reaction-diffusion equation carrying a maturation time delay, together with the homogeneous Dirichlet boundary condition. The non-locality arises from spatial movements of the immature individuals. We are mainly concerned with the case when the birth rate decays as the mature population size becomes large. The analysis is rather subtle and it is inadequate to apply the powerful theory of monotone dynamical systems. By using the method of super-sub solutions, combined with the careful analysis of the kernel function in the nonlocal term, we prove nonexistence, existence and uniqueness of the positive steady states of the model. By establishing an appropriate comparison principle and applying the theory of dissipative systems, we obtain some sufficient conditions for the global asymptotic stability of the trivial solution and the unique positive steady state.
Citation: Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095
References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach space,, \emph{SIAM Review}, 18 (1976), 620.   Google Scholar

[2]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, \emph{SIAM J. Appl. Math.}, 50 (1990), 1663.  doi: 10.1137/0150099.  Google Scholar

[3]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).   Google Scholar

[4]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread,, in \emph{Nonlinear Dynamics and Evolution Equations} (H. Brunner, 48 (2006), 137.   Google Scholar

[5]

Z. M. Guo, Z. C. Yang and X. Zou, Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition: a non-monotone case,, \emph{Commun. Pure Appl. Anal.}, 11 (2012), 1825.  doi: 10.3934/cpaa.2012.11.1825.  Google Scholar

[6]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Math. Surveys and Monographs 25, (1988).   Google Scholar

[7]

P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem,, \emph{Commun. Math. Phys.}, 88 (1983), 309.   Google Scholar

[8]

D. Liang, J. W. -H. So, F. Zhang and X. Zou, Population dynamic models with nonlocal delay on bounded fields and their numerical computations,, \emph{Diff. Eqns. Dynam. Syst.}, 11 (2003), 117.   Google Scholar

[9]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, \emph{Science}, 197 (1977), 287.   Google Scholar

[10]

J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations,, (J. A. J. Metz and O. Diekmann eds.), (1986).  doi: 10.1007/978-3-662-13159-6.  Google Scholar

[11]

M. H. Protter and H. F. Weinberger, Maximum Principle in Differential Equations,, Springer-Verlag, (1984).  doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[12]

D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems,, \emph{Indiana Univ. Math. J.}, 21 (1972), 979.   Google Scholar

[13]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences,, Texts in Applied Mathematics 57, (2011).  doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[14]

H. Smith and H. Thieme, Strongly order preserving semi-flows generated by functional differential equations,, \emph{J. Diff. Eqns.}, 93 (1991), 332.  doi: 10.1016/0022-0396(91)90016-3.  Google Scholar

[15]

J. W. -H. So, J. Wu and Y. Yang, Numerical steady state and hopf bifurcation analysis on the diffusive Nicholson's blowflies equation,, \emph{Appl. Math. Comput.}, 111 (2000), 33.  doi: 10.1016/S0096-3003(99)00047-8.  Google Scholar

[16]

J. W. -H. So, J. Wu and X. Zou, A reaction diffusion model for a single species with age structure-I. Traveling wave fronts on unbounded domains,, \emph{Proc. Royal Soc. London. A}, 457 (2001), 1841.  doi: 10.1098/rspa.2001.0789.  Google Scholar

[17]

H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model,, \emph{Nonlinear Anal. RWA.}, 2 (2001), 145.  doi: 10.1016/S0362-546X(00)00112-7.  Google Scholar

[18]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, \emph{J. Diff. Eqns.}, 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[19]

J. Wu, Theory and Applications of Partial Functional Differential Equations,, Appl. Math. Sci. 119, (1996).  doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[20]

D. Xu and X.-Q. Zhao, A nonlocal reaction-diffusion population model with stage structure,, \emph{Canad. Appl. Math. Quart.}, 11 (2003), 303.   Google Scholar

[21]

S. T. Yau and R. Schoen, Lectures on Differential Geometry,, Higher Education Press, (2004).   Google Scholar

[22]

T. Yi and X. Zou, Global dynamics of a delay differential equation with spatial non-locality in an unbounded domain,, \emph{J. Diff. Eqns.}, 251 (2011), 2598.  doi: 10.1016/j.jde.2011.04.027.  Google Scholar

[23]

T. Yi and X. Zou, On Dirichlet problem for a class of delayed reaction-diffusion equations with spatial non-locality,, \emph{J. Dyn. Diff. Equat.}, 25 (2013), 959.  doi: 10.1007/s10884-013-9324-3.  Google Scholar

[24]

X.-Q. Zhao, Global attractivity in a class of nonmonotone reaction diffusion equations with time delay,, \emph{Canad. Appl. Math. Quart.}, 17 (2009), 271.   Google Scholar

show all references

References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach space,, \emph{SIAM Review}, 18 (1976), 620.   Google Scholar

[2]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, \emph{SIAM J. Appl. Math.}, 50 (1990), 1663.  doi: 10.1137/0150099.  Google Scholar

[3]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).   Google Scholar

[4]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread,, in \emph{Nonlinear Dynamics and Evolution Equations} (H. Brunner, 48 (2006), 137.   Google Scholar

[5]

Z. M. Guo, Z. C. Yang and X. Zou, Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition: a non-monotone case,, \emph{Commun. Pure Appl. Anal.}, 11 (2012), 1825.  doi: 10.3934/cpaa.2012.11.1825.  Google Scholar

[6]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Math. Surveys and Monographs 25, (1988).   Google Scholar

[7]

P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem,, \emph{Commun. Math. Phys.}, 88 (1983), 309.   Google Scholar

[8]

D. Liang, J. W. -H. So, F. Zhang and X. Zou, Population dynamic models with nonlocal delay on bounded fields and their numerical computations,, \emph{Diff. Eqns. Dynam. Syst.}, 11 (2003), 117.   Google Scholar

[9]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, \emph{Science}, 197 (1977), 287.   Google Scholar

[10]

J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations,, (J. A. J. Metz and O. Diekmann eds.), (1986).  doi: 10.1007/978-3-662-13159-6.  Google Scholar

[11]

M. H. Protter and H. F. Weinberger, Maximum Principle in Differential Equations,, Springer-Verlag, (1984).  doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[12]

D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems,, \emph{Indiana Univ. Math. J.}, 21 (1972), 979.   Google Scholar

[13]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences,, Texts in Applied Mathematics 57, (2011).  doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[14]

H. Smith and H. Thieme, Strongly order preserving semi-flows generated by functional differential equations,, \emph{J. Diff. Eqns.}, 93 (1991), 332.  doi: 10.1016/0022-0396(91)90016-3.  Google Scholar

[15]

J. W. -H. So, J. Wu and Y. Yang, Numerical steady state and hopf bifurcation analysis on the diffusive Nicholson's blowflies equation,, \emph{Appl. Math. Comput.}, 111 (2000), 33.  doi: 10.1016/S0096-3003(99)00047-8.  Google Scholar

[16]

J. W. -H. So, J. Wu and X. Zou, A reaction diffusion model for a single species with age structure-I. Traveling wave fronts on unbounded domains,, \emph{Proc. Royal Soc. London. A}, 457 (2001), 1841.  doi: 10.1098/rspa.2001.0789.  Google Scholar

[17]

H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model,, \emph{Nonlinear Anal. RWA.}, 2 (2001), 145.  doi: 10.1016/S0362-546X(00)00112-7.  Google Scholar

[18]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, \emph{J. Diff. Eqns.}, 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[19]

J. Wu, Theory and Applications of Partial Functional Differential Equations,, Appl. Math. Sci. 119, (1996).  doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[20]

D. Xu and X.-Q. Zhao, A nonlocal reaction-diffusion population model with stage structure,, \emph{Canad. Appl. Math. Quart.}, 11 (2003), 303.   Google Scholar

[21]

S. T. Yau and R. Schoen, Lectures on Differential Geometry,, Higher Education Press, (2004).   Google Scholar

[22]

T. Yi and X. Zou, Global dynamics of a delay differential equation with spatial non-locality in an unbounded domain,, \emph{J. Diff. Eqns.}, 251 (2011), 2598.  doi: 10.1016/j.jde.2011.04.027.  Google Scholar

[23]

T. Yi and X. Zou, On Dirichlet problem for a class of delayed reaction-diffusion equations with spatial non-locality,, \emph{J. Dyn. Diff. Equat.}, 25 (2013), 959.  doi: 10.1007/s10884-013-9324-3.  Google Scholar

[24]

X.-Q. Zhao, Global attractivity in a class of nonmonotone reaction diffusion equations with time delay,, \emph{Canad. Appl. Math. Quart.}, 17 (2009), 271.   Google Scholar

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[3]

Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849

[4]

Yongli Cai, Yun Kang, Weiming Wang. Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1071-1089. doi: 10.3934/mbe.2017056

[5]

Tian Xiang. A study on the positive nonconstant steady states of nonlocal chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2457-2485. doi: 10.3934/dcdsb.2013.18.2457

[6]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[7]

Wei-Ming Ni, Yaping Wu, Qian Xu. The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5271-5298. doi: 10.3934/dcds.2014.34.5271

[8]

Qi Wang, Lu Zhang, Jingyue Yang, Jia Hu. Global existence and steady states of a two competing species Keller--Segel chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 777-807. doi: 10.3934/krm.2015.8.777

[9]

Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026

[10]

Yunfeng Jia, Yi Li, Jianhua Wu. Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4785-4813. doi: 10.3934/dcds.2017206

[11]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[12]

Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1279-1297. doi: 10.3934/cpaa.2013.12.1279

[13]

Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763

[14]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[15]

Soohyun Bae. Weighted $L^\infty$ stability of positive steady states of a semilinear heat equation in $\R^n$. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 823-837. doi: 10.3934/dcds.2010.26.823

[16]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[17]

Kaigang Huang, Yongli Cai, Feng Rao, Shengmao Fu, Weiming Wang. Positive steady states of a density-dependent predator-prey model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3087-3107. doi: 10.3934/dcdsb.2017209

[18]

Hongmei Cheng, Rong Yuan. Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 3007-3022. doi: 10.3934/dcdsb.2017160

[19]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[20]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]