-
Previous Article
Cyclicity of some Liénard Systems
- CPAA Home
- This Issue
- Next Article
Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane
1. | Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50--384 Wrocław |
2. | Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile |
3. | Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław |
References:
[1] |
J. Bedrossian and N. Masmoudi, Existence, uniqueness and Lipschitz dependence for Patlak-Keller-Segel and Navier-Stokes in $\mathbb R^2$ with measure-valued initial data,, Arch. Rational Mech. Anal., 214 (2014), 717.
doi: 10.1007/s00205-014-0796-z. |
[2] |
P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation,, Studia Math., 114 (1995), 181.
|
[3] |
P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715.
|
[4] |
P. Biler, Radially symmetric solutions of a chemotaxis model in the plane - the supercritical case, in: Parabolic and Navier-Stokes Equations,, Banach Center Publications, 81 (2008), 31.
doi: 10.4064/bc81-0-2. |
[5] |
P. Biler and L. Brandolese, On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis,, Studia Math., 193 (2009), 241.
doi: 10.4064/sm193-3-2. |
[6] |
P. Biler, L. Corrias and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model,, J. Math. Biology, 63 (2011), 1.
doi: 10.1007/s00285-010-0357-5. |
[7] |
P. Biler, G. Karch, Ph. Laurençot and T. Nadzieja, The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in the plane,, Math. Methods in the Applied Sci., 29 (2006), 1563.
doi: 10.1002/mma.743. |
[8] |
A. Blanchet, E. Carlen and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model,, J. Functional Anal., 262 (2012), 2142.
doi: 10.1016/j.jfa.2011.12.012. |
[9] |
A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbb R^2$,, Comm. Pure Appl. Math., 61 (2008), 1449.
doi: 10.1002/cpa.20225. |
[10] |
A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions,, Electron. J. Differential Equations, 44 (2006).
|
[11] |
V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbb R^2$,, Commun. Math. Sci., 6 (2008), 417.
|
[12] |
L. Corrias, M. Escobedo and J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane,, J. Differential Equations, 257 (2014), 1840.
doi: 10.1016/j.jde.2014.05.019. |
[13] |
J. Dolbeault and Ch. Schmeiser, The two-dimensional Keller-Segel model after blow-up,, Discrete Contin. Dyn. Syst., 25 (2009), 109.
doi: 10.3934/dcds.2009.25.109. |
[14] |
Y. Giga, T. Miyakawa and H. Osada, Two-dimensional Navier-Stokes flow with measures as initial vorticity,, Arch. Rational Mech. Anal., 104 (1988), 223.
doi: 10.1007/BF00281355. |
[15] |
H. Kozono and Y. Sugiyama, Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system,, J. Evol. Equ., 8 (2008), 353.
doi: 10.1007/s00028-008-0375-6. |
[16] |
P.-G. Lemarié-Rieusset, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space,, Adv. Diff. Eq., 18 (2013), 1189.
|
[17] |
S. Luckhaus, Y. Sugiyama and J. J. L. Vélazquez, Measure valued solutions of the 2D Keller-Segel system,, Arch. Rational Mech. Anal., 206 (2012), 31.
doi: 10.1007/s00205-012-0549-9. |
[18] |
N. Mizoguchi, Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane,, Calc. Var., 48 (2013), 491.
doi: 10.1007/s00526-012-0558-4. |
[19] |
N. Mizoguchi and M. Winkler, (2013),, personal communication., (). Google Scholar |
[20] |
Y. Naito, Asymptotically self-similar solutions for the parabolic system modelling chemotaxis; in: Self-similar solutions of nonlinear PDE,, Banach Center Publ., 74 (2006), 149.
doi: 10.4064/bc74-0-9. |
[21] |
A. Raczyński, Stability property of the two-dimensional Keller-Segel model,, Asymptot. Anal., 61 (2009), 35.
|
[22] |
T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis,, J. Functional Anal., 191 (2002), 17.
doi: 10.1006/jfan.2001.3802. |
[23] |
J. J. L. Vélazquez, Point Dynamics in a singular limit of the Keller-Segel model 1: Motion of the concentration regions,, SIAM J. Appl. Math., 64 (2004), 1198.
doi: 10.1137/S0036139903433888. |
show all references
References:
[1] |
J. Bedrossian and N. Masmoudi, Existence, uniqueness and Lipschitz dependence for Patlak-Keller-Segel and Navier-Stokes in $\mathbb R^2$ with measure-valued initial data,, Arch. Rational Mech. Anal., 214 (2014), 717.
doi: 10.1007/s00205-014-0796-z. |
[2] |
P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation,, Studia Math., 114 (1995), 181.
|
[3] |
P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715.
|
[4] |
P. Biler, Radially symmetric solutions of a chemotaxis model in the plane - the supercritical case, in: Parabolic and Navier-Stokes Equations,, Banach Center Publications, 81 (2008), 31.
doi: 10.4064/bc81-0-2. |
[5] |
P. Biler and L. Brandolese, On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis,, Studia Math., 193 (2009), 241.
doi: 10.4064/sm193-3-2. |
[6] |
P. Biler, L. Corrias and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model,, J. Math. Biology, 63 (2011), 1.
doi: 10.1007/s00285-010-0357-5. |
[7] |
P. Biler, G. Karch, Ph. Laurençot and T. Nadzieja, The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in the plane,, Math. Methods in the Applied Sci., 29 (2006), 1563.
doi: 10.1002/mma.743. |
[8] |
A. Blanchet, E. Carlen and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model,, J. Functional Anal., 262 (2012), 2142.
doi: 10.1016/j.jfa.2011.12.012. |
[9] |
A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbb R^2$,, Comm. Pure Appl. Math., 61 (2008), 1449.
doi: 10.1002/cpa.20225. |
[10] |
A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions,, Electron. J. Differential Equations, 44 (2006).
|
[11] |
V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbb R^2$,, Commun. Math. Sci., 6 (2008), 417.
|
[12] |
L. Corrias, M. Escobedo and J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane,, J. Differential Equations, 257 (2014), 1840.
doi: 10.1016/j.jde.2014.05.019. |
[13] |
J. Dolbeault and Ch. Schmeiser, The two-dimensional Keller-Segel model after blow-up,, Discrete Contin. Dyn. Syst., 25 (2009), 109.
doi: 10.3934/dcds.2009.25.109. |
[14] |
Y. Giga, T. Miyakawa and H. Osada, Two-dimensional Navier-Stokes flow with measures as initial vorticity,, Arch. Rational Mech. Anal., 104 (1988), 223.
doi: 10.1007/BF00281355. |
[15] |
H. Kozono and Y. Sugiyama, Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system,, J. Evol. Equ., 8 (2008), 353.
doi: 10.1007/s00028-008-0375-6. |
[16] |
P.-G. Lemarié-Rieusset, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space,, Adv. Diff. Eq., 18 (2013), 1189.
|
[17] |
S. Luckhaus, Y. Sugiyama and J. J. L. Vélazquez, Measure valued solutions of the 2D Keller-Segel system,, Arch. Rational Mech. Anal., 206 (2012), 31.
doi: 10.1007/s00205-012-0549-9. |
[18] |
N. Mizoguchi, Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane,, Calc. Var., 48 (2013), 491.
doi: 10.1007/s00526-012-0558-4. |
[19] |
N. Mizoguchi and M. Winkler, (2013),, personal communication., (). Google Scholar |
[20] |
Y. Naito, Asymptotically self-similar solutions for the parabolic system modelling chemotaxis; in: Self-similar solutions of nonlinear PDE,, Banach Center Publ., 74 (2006), 149.
doi: 10.4064/bc74-0-9. |
[21] |
A. Raczyński, Stability property of the two-dimensional Keller-Segel model,, Asymptot. Anal., 61 (2009), 35.
|
[22] |
T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis,, J. Functional Anal., 191 (2002), 17.
doi: 10.1006/jfan.2001.3802. |
[23] |
J. J. L. Vélazquez, Point Dynamics in a singular limit of the Keller-Segel model 1: Motion of the concentration regions,, SIAM J. Appl. Math., 64 (2004), 1198.
doi: 10.1137/S0036139903433888. |
[1] |
Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569 |
[2] |
Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015 |
[3] |
Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809 |
[4] |
Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464 |
[5] |
Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821 |
[6] |
Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243 |
[7] |
Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 119-137. doi: 10.3934/dcdss.2020007 |
[8] |
Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013 |
[9] |
Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078 |
[10] |
Mengyao Ding, Xiangdong Zhao. $ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5297-5315. doi: 10.3934/dcdsb.2019059 |
[11] |
Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093 |
[12] |
Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81 |
[13] |
Etsushi Nakaguchi, Koichi Osaki. Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2627-2646. doi: 10.3934/dcdsb.2013.18.2627 |
[14] |
Xinru Cao. Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3369-3378. doi: 10.3934/dcdsb.2017141 |
[15] |
Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029 |
[16] |
Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046 |
[17] |
Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061 |
[18] |
Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179 |
[19] |
Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317 |
[20] |
Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]