Citation: |
[1] |
J. Bedrossian and N. Masmoudi, Existence, uniqueness and Lipschitz dependence for Patlak-Keller-Segel and Navier-Stokes in $\mathbb R^2$ with measure-valued initial data, Arch. Rational Mech. Anal., 214 (2014), 717-801.doi: 10.1007/s00205-014-0796-z. |
[2] |
P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Math., 114 (1995), 181-205. |
[3] |
P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743. |
[4] |
P. Biler, Radially symmetric solutions of a chemotaxis model in the plane - the supercritical case, in: Parabolic and Navier-Stokes Equations, Banach Center Publications, 81 (2008), 31-42.doi: 10.4064/bc81-0-2. |
[5] |
P. Biler and L. Brandolese, On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis, Studia Math., 193 (2009), 241-261.doi: 10.4064/sm193-3-2. |
[6] |
P. Biler, L. Corrias and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model, J. Math. Biology, 63 (2011), 1-32.doi: 10.1007/s00285-010-0357-5. |
[7] |
P. Biler, G. Karch, Ph. Laurençot and T. Nadzieja, The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Methods in the Applied Sci., 29 (2006), 1563-1583.doi: 10.1002/mma.743. |
[8] |
A. Blanchet, E. Carlen and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, J. Functional Anal., 262 (2012), 2142-2230.doi: 10.1016/j.jfa.2011.12.012. |
[9] |
A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbb R^2$, Comm. Pure Appl. Math., 61 (2008), 1449-1481.doi: 10.1002/cpa.20225. |
[10] |
A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 44 (2006), 32 pp. |
[11] |
V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbb R^2$, Commun. Math. Sci., 6 (2008), 417-447. |
[12] |
L. Corrias, M. Escobedo and J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane, J. Differential Equations, 257 (2014), 1840-1878.doi: 10.1016/j.jde.2014.05.019. |
[13] |
J. Dolbeault and Ch. Schmeiser, The two-dimensional Keller-Segel model after blow-up, Discrete Contin. Dyn. Syst., 25 (2009), 109-121.doi: 10.3934/dcds.2009.25.109. |
[14] |
Y. Giga, T. Miyakawa and H. Osada, Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal., 104 (1988), 223-250.doi: 10.1007/BF00281355. |
[15] |
H. Kozono and Y. Sugiyama, Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system, J. Evol. Equ., 8 (2008), 353-378.doi: 10.1007/s00028-008-0375-6. |
[16] |
P.-G. Lemarié-Rieusset, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space, Adv. Diff. Eq., 18 (2013), 1189-1208. |
[17] |
S. Luckhaus, Y. Sugiyama and J. J. L. Vélazquez, Measure valued solutions of the 2D Keller-Segel system, Arch. Rational Mech. Anal., 206 (2012), 31-80.doi: 10.1007/s00205-012-0549-9. |
[18] |
N. Mizoguchi, Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane, Calc. Var., 48 (2013), 491-505.doi: 10.1007/s00526-012-0558-4. |
[19] |
N. Mizoguchi and M. Winkler, (2013), personal communication. |
[20] |
Y. Naito, Asymptotically self-similar solutions for the parabolic system modelling chemotaxis; in: Self-similar solutions of nonlinear PDE, Banach Center Publ., 74 (2006), 149-160.doi: 10.4064/bc74-0-9. |
[21] |
A. Raczyński, Stability property of the two-dimensional Keller-Segel model, Asymptot. Anal., 61 (2009), 35-59. |
[22] |
T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis, J. Functional Anal., 191 (2002), 17-51.doi: 10.1006/jfan.2001.3802. |
[23] |
J. J. L. Vélazquez, Point Dynamics in a singular limit of the Keller-Segel model 1: Motion of the concentration regions, SIAM J. Appl. Math., 64 (2004), 1198-1223.doi: 10.1137/S0036139903433888. |