-
Previous Article
On some semilinear equation in $R^4$ containing a Laplacian term and involving nonlinearity with exponential growth
- CPAA Home
- This Issue
-
Next Article
Homogenization of bending theory for plates; the case of oscillations in the direction of thickness
Blow up threshold for a parabolic type equation involving space integral and variational structure
1. | School of Mathematics and Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China |
2. | Department of Mathematics, Henan Normal University, Xinxiang, 453007, China |
References:
[1] |
J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, 28 (1977), 473-486. |
[2] |
F. Dickstein, N. Mizoguchi, P. Souplet and F. Weissler, Transversality of stable and Nehari manifolds for a semilinear heat equation, Calc. Var., 42 (2011), 547-562.
doi: 10.1007/s00526-011-0397-8. |
[3] |
G. Filippo and T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Diff. Int. Eq., 18 (2005), 961-990. |
[4] |
J. Furter and M. Grinfeld, Local vs. non-local interactions in population dynamics, J. Math. Biol., 27 (1989), 65-80.
doi: 10.1007/BF00276081. |
[5] |
S. A. Gourley, Travelling front solutions of a nonlocal Fisher equation, J. Math. Biol., 41 (2000), 272-284.
doi: 10.1007/s002850000047. |
[6] |
H. Hiroki and Y. Yamada, Solvability and smoothing effect for semilinear parabolic equations, Funkcial. Ekvac., 34 (1991), 475-494. |
[7] |
R. Ikehata and and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26 (1992), 475-491. |
[8] |
R. Ikehata and T. Suzuki, Semilinear parabolic equations involving critical Sobolev exponent: local and asymptotic behavior of solutions, Diff. Int. Eq., 13 (2000), 869-901. |
[9] |
A. A. Lacey, Thermal runaway in a non-local problem modelling Ohmic beating: Part 1: Model derivation and some special cases, European Journal of Applied Mathematics, 6 (1995), 127-144. |
[10] |
B. Y. Liu and L. Ma, Invariant sets and the blow up threshold for a nonlocal equation of parabolic type, Nonlinear Analysis: Theory, Methods and Applications, 110 (2014), 141-156.
doi: 10.1016/j.na.2014.08.004. |
[11] |
Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Analysis: Theory, Methods and Applications, 64 (2006), 2665-2687.
doi: 10.1016/j.na.2005.09.011. |
[12] |
L. Ma, Global existence and blow-up results for a classical semilinear parabolic equation, Chinese Annals of Mathematics, Series B, 34 (2013), 587-592.
doi: 10.1007/s11401-013-0778-8. |
[13] |
L. Ma, Blow-up for semilinear parabolic equations with critical sobolev exponent, Commun. Pur. Appl. Anal., 12 (2013), 1103-1110.
doi: 10.3934/cpaa.2013.12.1103. |
[14] |
C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations, J. Differ. Equations, 235 (2007), 219-261.
doi: 10.1016/j.jde.2006.12.010. |
[15] |
L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel Journal of Mathematics, 22 (1975), 273-303. |
[16] |
P. Quittner, A priori bounds for global solutions of a semilinear parabolic problem, Acta Math. Univ. Comenianae, 68 (1999), 195-203. |
[17] |
P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-Up, Global Existence and Steady States, $1^{st}$ edition, Birkhauser Advanced Text, Basel/Boston/Berlin, 2007.
doi: 978-3-7643-8441-8. |
[18] |
D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Archive for Rational Mechanics and Analysis, 30 (1968), 148-172. |
[19] |
J. W. J. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I Travelling wavefronts on unbounded domains, J. Amer. Math. Soc., P. Lond. Math. Soc. A, 2001, 457 (2012), 1841-1853.
doi: 10.1098/rspa.2001.0789. |
[20] |
T. Suzuki, Semilinear parabolic equation on bounded domain with critical Sobolev exponent, Indiana Univ. Math. J., 57 (2008), 3365-3396.
doi: 10.1512/iumj.2008.57.3269. |
[21] |
R. Z. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quarterly of Applied Mathematics, 68 (2010), 459-468.
doi: 10.1090/S0033-569X-2010-01197-0. |
[22] |
G. Yoshikazu, A bound for global solutions of semilinear heat equations, Commun. Math. Phys., 103 (1986), 415-421. |
show all references
References:
[1] |
J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, 28 (1977), 473-486. |
[2] |
F. Dickstein, N. Mizoguchi, P. Souplet and F. Weissler, Transversality of stable and Nehari manifolds for a semilinear heat equation, Calc. Var., 42 (2011), 547-562.
doi: 10.1007/s00526-011-0397-8. |
[3] |
G. Filippo and T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Diff. Int. Eq., 18 (2005), 961-990. |
[4] |
J. Furter and M. Grinfeld, Local vs. non-local interactions in population dynamics, J. Math. Biol., 27 (1989), 65-80.
doi: 10.1007/BF00276081. |
[5] |
S. A. Gourley, Travelling front solutions of a nonlocal Fisher equation, J. Math. Biol., 41 (2000), 272-284.
doi: 10.1007/s002850000047. |
[6] |
H. Hiroki and Y. Yamada, Solvability and smoothing effect for semilinear parabolic equations, Funkcial. Ekvac., 34 (1991), 475-494. |
[7] |
R. Ikehata and and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26 (1992), 475-491. |
[8] |
R. Ikehata and T. Suzuki, Semilinear parabolic equations involving critical Sobolev exponent: local and asymptotic behavior of solutions, Diff. Int. Eq., 13 (2000), 869-901. |
[9] |
A. A. Lacey, Thermal runaway in a non-local problem modelling Ohmic beating: Part 1: Model derivation and some special cases, European Journal of Applied Mathematics, 6 (1995), 127-144. |
[10] |
B. Y. Liu and L. Ma, Invariant sets and the blow up threshold for a nonlocal equation of parabolic type, Nonlinear Analysis: Theory, Methods and Applications, 110 (2014), 141-156.
doi: 10.1016/j.na.2014.08.004. |
[11] |
Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Analysis: Theory, Methods and Applications, 64 (2006), 2665-2687.
doi: 10.1016/j.na.2005.09.011. |
[12] |
L. Ma, Global existence and blow-up results for a classical semilinear parabolic equation, Chinese Annals of Mathematics, Series B, 34 (2013), 587-592.
doi: 10.1007/s11401-013-0778-8. |
[13] |
L. Ma, Blow-up for semilinear parabolic equations with critical sobolev exponent, Commun. Pur. Appl. Anal., 12 (2013), 1103-1110.
doi: 10.3934/cpaa.2013.12.1103. |
[14] |
C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations, J. Differ. Equations, 235 (2007), 219-261.
doi: 10.1016/j.jde.2006.12.010. |
[15] |
L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel Journal of Mathematics, 22 (1975), 273-303. |
[16] |
P. Quittner, A priori bounds for global solutions of a semilinear parabolic problem, Acta Math. Univ. Comenianae, 68 (1999), 195-203. |
[17] |
P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-Up, Global Existence and Steady States, $1^{st}$ edition, Birkhauser Advanced Text, Basel/Boston/Berlin, 2007.
doi: 978-3-7643-8441-8. |
[18] |
D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Archive for Rational Mechanics and Analysis, 30 (1968), 148-172. |
[19] |
J. W. J. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I Travelling wavefronts on unbounded domains, J. Amer. Math. Soc., P. Lond. Math. Soc. A, 2001, 457 (2012), 1841-1853.
doi: 10.1098/rspa.2001.0789. |
[20] |
T. Suzuki, Semilinear parabolic equation on bounded domain with critical Sobolev exponent, Indiana Univ. Math. J., 57 (2008), 3365-3396.
doi: 10.1512/iumj.2008.57.3269. |
[21] |
R. Z. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quarterly of Applied Mathematics, 68 (2010), 459-468.
doi: 10.1090/S0033-569X-2010-01197-0. |
[22] |
G. Yoshikazu, A bound for global solutions of semilinear heat equations, Commun. Math. Phys., 103 (1986), 415-421. |
[1] |
Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042 |
[2] |
Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134 |
[3] |
Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 |
[4] |
Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843 |
[5] |
Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072 |
[6] |
Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111 |
[7] |
Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519 |
[8] |
Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113 |
[9] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[10] |
Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535 |
[11] |
Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051 |
[12] |
Xiaoli Zhu, Fuyi Li, Ting Rong. Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2465-2485. doi: 10.3934/cpaa.2015.14.2465 |
[13] |
Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121 |
[14] |
Walter A. Strauss, Kimitoshi Tsutaya. Existence and blow up of small amplitude nonlinear waves with a negative potential. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 175-188. doi: 10.3934/dcds.1997.3.175 |
[15] |
Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633 |
[16] |
Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169 |
[17] |
Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022106 |
[18] |
Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617 |
[19] |
Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089 |
[20] |
Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure and Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]