January  2015, 14(1): 217-228. doi: 10.3934/cpaa.2015.14.217

An obstacle problem for Tug-of-War games

1. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States

2. 

Departamento de Análisis Matemático, Universidad de Alicante, Ap 99, 03080, Alicante, Spain

3. 

Department of Mathematics, Dartmouth College, Hanover, NH 03755, United States

Received  March 2014 Revised  April 2014 Published  September 2014

We consider the obstacle problem for the infinity Laplace equation. Given a Lipschitz boundary function and a Lipschitz obstacle we prove the existence and uniqueness of a super infinity-harmonic function constrained to lie above the obstacle which is infinity harmonic where it lies strictly above the obstacle. Moreover, we show that this function is the limit of value functions of a game we call obstacle tug-of-war.
Citation: Juan J. Manfredi, Julio D. Rossi, Stephanie J. Somersille. An obstacle problem for Tug-of-War games. Communications on Pure & Applied Analysis, 2015, 14 (1) : 217-228. doi: 10.3934/cpaa.2015.14.217
References:
[1]

T. Antunović, Y. Peres and S. Sheffield and S. Somersille, Tug-of-War and infinity Laplace equation with vanishing Neumann boundary conditions,, \emph{Communications in Partial Differential Equations}, 37 (2012), 1839.  doi: 10.1080/03605302.2011.642450.  Google Scholar

[2]

S. N. Armstrong, C. K. Smart and S. J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions,, \emph{Proc. Amer. Math. Soc.}, 139 (2011), 1763.  doi: 10.1090/S0002-9939-2010-10666-4.  Google Scholar

[3]

G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, \emph{Bull. Amer. Math. Soc.}, 41 (2004), 439.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[4]

T. Bhattacharya, E. Di Benedetto and J. Manfredi, Limits as $p \to \infty$ of $\Delta_p u_p = f$ and related extremal problems,, \emph{Rend. Sem. Mat. Univ. Politec. Torino}, (1991), 15.   Google Scholar

[5]

C. Bjorland, L. Caffarelli and A. Figalli, Non-local tug-of-war and the infinity fractional Laplacian,, \emph{Comm. Pure. Appl. Math.}, 65 (2012), 337.  doi: 10.1002/cpa.21379.  Google Scholar

[6]

V. Caselles, J. M. Morel and C. Sbert, An axiomatic approach to image interpolation,, \emph{IEEE Trans. Image Process}, 7 (1998), 376.  doi: 10.1109/83.661188.  Google Scholar

[7]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc.}, 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[8]

A. P. Maitra and W. D. Sudderth, Discrete Gambling and Stochastic Games,, Applications of Mathematics 32, (1996).  doi: 10.1007/978-1-4612-4002-0.  Google Scholar

[9]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization of $p$-harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 138 (2010), 881.  doi: 10.1090/S0002-9939-09-10183-1.  Google Scholar

[10]

J. J. Manfredi, M. Parviainen and J. D. Rossi, Dynamic programming principle for tug-of-war games with noise,, \emph{Control Optim. Calc. Var. COCV}, 18 (2012), 81.  doi: 10.1051/cocv/2010046.  Google Scholar

[11]

J. J. Manfredi, M. Parviainen and J. D. Rossi, On the definition and properties of $p$-harmonious functions,, \emph{Annali Scuola Normale Sup. Pisa, XI (2012), 215.   Google Scholar

[12]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, \emph{SIAM J. Math. Anal.}, 42 (2010), 2058.  doi: 10.1137/100782073.  Google Scholar

[13]

Y. Peres, G. Pete and S. Somersille, Biased Tug-of-War, the biased infinity Laplacian and comparison with exponential cones,, \emph{Calc. Var. Partial Differential Equations}, 38 (2010), 541.  doi: 10.1007/s00526-009-0298-2.  Google Scholar

[14]

Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian,, \emph{J. Amer. Math. Soc.}, 22 (2009), 167.  doi: 10.1090/S0894-0347-08-00606-1.  Google Scholar

[15]

Y. Peres and S. Sheffield, Tug-of-war with noise: a game theoretic view of the $p$-Laplacian,, \emph{Duke Math. J.}, 145 (2008), 91.  doi: 10.1215/00127094-2008-048.  Google Scholar

[16]

J. D. Rossi, E. V. Teixeira and J. M. Urbano, Optimal regularity at the free boundary for the infinity obstacle problem,, Preprint., ().   Google Scholar

show all references

References:
[1]

T. Antunović, Y. Peres and S. Sheffield and S. Somersille, Tug-of-War and infinity Laplace equation with vanishing Neumann boundary conditions,, \emph{Communications in Partial Differential Equations}, 37 (2012), 1839.  doi: 10.1080/03605302.2011.642450.  Google Scholar

[2]

S. N. Armstrong, C. K. Smart and S. J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions,, \emph{Proc. Amer. Math. Soc.}, 139 (2011), 1763.  doi: 10.1090/S0002-9939-2010-10666-4.  Google Scholar

[3]

G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, \emph{Bull. Amer. Math. Soc.}, 41 (2004), 439.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[4]

T. Bhattacharya, E. Di Benedetto and J. Manfredi, Limits as $p \to \infty$ of $\Delta_p u_p = f$ and related extremal problems,, \emph{Rend. Sem. Mat. Univ. Politec. Torino}, (1991), 15.   Google Scholar

[5]

C. Bjorland, L. Caffarelli and A. Figalli, Non-local tug-of-war and the infinity fractional Laplacian,, \emph{Comm. Pure. Appl. Math.}, 65 (2012), 337.  doi: 10.1002/cpa.21379.  Google Scholar

[6]

V. Caselles, J. M. Morel and C. Sbert, An axiomatic approach to image interpolation,, \emph{IEEE Trans. Image Process}, 7 (1998), 376.  doi: 10.1109/83.661188.  Google Scholar

[7]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc.}, 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[8]

A. P. Maitra and W. D. Sudderth, Discrete Gambling and Stochastic Games,, Applications of Mathematics 32, (1996).  doi: 10.1007/978-1-4612-4002-0.  Google Scholar

[9]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization of $p$-harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 138 (2010), 881.  doi: 10.1090/S0002-9939-09-10183-1.  Google Scholar

[10]

J. J. Manfredi, M. Parviainen and J. D. Rossi, Dynamic programming principle for tug-of-war games with noise,, \emph{Control Optim. Calc. Var. COCV}, 18 (2012), 81.  doi: 10.1051/cocv/2010046.  Google Scholar

[11]

J. J. Manfredi, M. Parviainen and J. D. Rossi, On the definition and properties of $p$-harmonious functions,, \emph{Annali Scuola Normale Sup. Pisa, XI (2012), 215.   Google Scholar

[12]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, \emph{SIAM J. Math. Anal.}, 42 (2010), 2058.  doi: 10.1137/100782073.  Google Scholar

[13]

Y. Peres, G. Pete and S. Somersille, Biased Tug-of-War, the biased infinity Laplacian and comparison with exponential cones,, \emph{Calc. Var. Partial Differential Equations}, 38 (2010), 541.  doi: 10.1007/s00526-009-0298-2.  Google Scholar

[14]

Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian,, \emph{J. Amer. Math. Soc.}, 22 (2009), 167.  doi: 10.1090/S0894-0347-08-00606-1.  Google Scholar

[15]

Y. Peres and S. Sheffield, Tug-of-war with noise: a game theoretic view of the $p$-Laplacian,, \emph{Duke Math. J.}, 145 (2008), 91.  doi: 10.1215/00127094-2008-048.  Google Scholar

[16]

J. D. Rossi, E. V. Teixeira and J. M. Urbano, Optimal regularity at the free boundary for the infinity obstacle problem,, Preprint., ().   Google Scholar

[1]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[2]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[3]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[4]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[5]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[6]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[7]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[8]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[9]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[10]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[11]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[13]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[14]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[17]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[18]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[19]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (4)

[Back to Top]