-
Previous Article
Optimal matching problems with costs given by Finsler distances
- CPAA Home
- This Issue
-
Next Article
Stability of degenerate parabolic Cauchy problems
An obstacle problem for Tug-of-War games
1. | Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States |
2. | Departamento de Análisis Matemático, Universidad de Alicante, Ap 99, 03080, Alicante, Spain |
3. | Department of Mathematics, Dartmouth College, Hanover, NH 03755, United States |
References:
[1] |
T. Antunović, Y. Peres and S. Sheffield and S. Somersille, Tug-of-War and infinity Laplace equation with vanishing Neumann boundary conditions,, \emph{Communications in Partial Differential Equations}, 37 (2012), 1839.
doi: 10.1080/03605302.2011.642450. |
[2] |
S. N. Armstrong, C. K. Smart and S. J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions,, \emph{Proc. Amer. Math. Soc.}, 139 (2011), 1763.
doi: 10.1090/S0002-9939-2010-10666-4. |
[3] |
G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, \emph{Bull. Amer. Math. Soc.}, 41 (2004), 439.
doi: 10.1090/S0273-0979-04-01035-3. |
[4] |
T. Bhattacharya, E. Di Benedetto and J. Manfredi, Limits as $p \to \infty$ of $\Delta_p u_p = f$ and related extremal problems,, \emph{Rend. Sem. Mat. Univ. Politec. Torino}, (1991), 15.
|
[5] |
C. Bjorland, L. Caffarelli and A. Figalli, Non-local tug-of-war and the infinity fractional Laplacian,, \emph{Comm. Pure. Appl. Math.}, 65 (2012), 337.
doi: 10.1002/cpa.21379. |
[6] |
V. Caselles, J. M. Morel and C. Sbert, An axiomatic approach to image interpolation,, \emph{IEEE Trans. Image Process}, 7 (1998), 376.
doi: 10.1109/83.661188. |
[7] |
M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc.}, 27 (1992), 1.
doi: 10.1090/S0273-0979-1992-00266-5. |
[8] |
A. P. Maitra and W. D. Sudderth, Discrete Gambling and Stochastic Games,, Applications of Mathematics 32, (1996).
doi: 10.1007/978-1-4612-4002-0. |
[9] |
J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization of $p$-harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 138 (2010), 881.
doi: 10.1090/S0002-9939-09-10183-1. |
[10] |
J. J. Manfredi, M. Parviainen and J. D. Rossi, Dynamic programming principle for tug-of-war games with noise,, \emph{Control Optim. Calc. Var. COCV}, 18 (2012), 81.
doi: 10.1051/cocv/2010046. |
[11] |
J. J. Manfredi, M. Parviainen and J. D. Rossi, On the definition and properties of $p$-harmonious functions,, \emph{Annali Scuola Normale Sup. Pisa, XI (2012), 215.
|
[12] |
J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, \emph{SIAM J. Math. Anal.}, 42 (2010), 2058.
doi: 10.1137/100782073. |
[13] |
Y. Peres, G. Pete and S. Somersille, Biased Tug-of-War, the biased infinity Laplacian and comparison with exponential cones,, \emph{Calc. Var. Partial Differential Equations}, 38 (2010), 541.
doi: 10.1007/s00526-009-0298-2. |
[14] |
Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian,, \emph{J. Amer. Math. Soc.}, 22 (2009), 167.
doi: 10.1090/S0894-0347-08-00606-1. |
[15] |
Y. Peres and S. Sheffield, Tug-of-war with noise: a game theoretic view of the $p$-Laplacian,, \emph{Duke Math. J.}, 145 (2008), 91.
doi: 10.1215/00127094-2008-048. |
[16] |
J. D. Rossi, E. V. Teixeira and J. M. Urbano, Optimal regularity at the free boundary for the infinity obstacle problem,, Preprint., (). Google Scholar |
show all references
References:
[1] |
T. Antunović, Y. Peres and S. Sheffield and S. Somersille, Tug-of-War and infinity Laplace equation with vanishing Neumann boundary conditions,, \emph{Communications in Partial Differential Equations}, 37 (2012), 1839.
doi: 10.1080/03605302.2011.642450. |
[2] |
S. N. Armstrong, C. K. Smart and S. J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions,, \emph{Proc. Amer. Math. Soc.}, 139 (2011), 1763.
doi: 10.1090/S0002-9939-2010-10666-4. |
[3] |
G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, \emph{Bull. Amer. Math. Soc.}, 41 (2004), 439.
doi: 10.1090/S0273-0979-04-01035-3. |
[4] |
T. Bhattacharya, E. Di Benedetto and J. Manfredi, Limits as $p \to \infty$ of $\Delta_p u_p = f$ and related extremal problems,, \emph{Rend. Sem. Mat. Univ. Politec. Torino}, (1991), 15.
|
[5] |
C. Bjorland, L. Caffarelli and A. Figalli, Non-local tug-of-war and the infinity fractional Laplacian,, \emph{Comm. Pure. Appl. Math.}, 65 (2012), 337.
doi: 10.1002/cpa.21379. |
[6] |
V. Caselles, J. M. Morel and C. Sbert, An axiomatic approach to image interpolation,, \emph{IEEE Trans. Image Process}, 7 (1998), 376.
doi: 10.1109/83.661188. |
[7] |
M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc.}, 27 (1992), 1.
doi: 10.1090/S0273-0979-1992-00266-5. |
[8] |
A. P. Maitra and W. D. Sudderth, Discrete Gambling and Stochastic Games,, Applications of Mathematics 32, (1996).
doi: 10.1007/978-1-4612-4002-0. |
[9] |
J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization of $p$-harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 138 (2010), 881.
doi: 10.1090/S0002-9939-09-10183-1. |
[10] |
J. J. Manfredi, M. Parviainen and J. D. Rossi, Dynamic programming principle for tug-of-war games with noise,, \emph{Control Optim. Calc. Var. COCV}, 18 (2012), 81.
doi: 10.1051/cocv/2010046. |
[11] |
J. J. Manfredi, M. Parviainen and J. D. Rossi, On the definition and properties of $p$-harmonious functions,, \emph{Annali Scuola Normale Sup. Pisa, XI (2012), 215.
|
[12] |
J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, \emph{SIAM J. Math. Anal.}, 42 (2010), 2058.
doi: 10.1137/100782073. |
[13] |
Y. Peres, G. Pete and S. Somersille, Biased Tug-of-War, the biased infinity Laplacian and comparison with exponential cones,, \emph{Calc. Var. Partial Differential Equations}, 38 (2010), 541.
doi: 10.1007/s00526-009-0298-2. |
[14] |
Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian,, \emph{J. Amer. Math. Soc.}, 22 (2009), 167.
doi: 10.1090/S0894-0347-08-00606-1. |
[15] |
Y. Peres and S. Sheffield, Tug-of-war with noise: a game theoretic view of the $p$-Laplacian,, \emph{Duke Math. J.}, 145 (2008), 91.
doi: 10.1215/00127094-2008-048. |
[16] |
J. D. Rossi, E. V. Teixeira and J. M. Urbano, Optimal regularity at the free boundary for the infinity obstacle problem,, Preprint., (). Google Scholar |
[1] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[2] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[3] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021006 |
[4] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[5] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[6] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[7] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[8] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[9] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[10] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[11] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[12] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[13] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031 |
[14] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[15] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[16] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[17] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[18] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[19] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]