January  2015, 14(1): 217-228. doi: 10.3934/cpaa.2015.14.217

An obstacle problem for Tug-of-War games

1. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States

2. 

Departamento de Análisis Matemático, Universidad de Alicante, Ap 99, 03080, Alicante, Spain

3. 

Department of Mathematics, Dartmouth College, Hanover, NH 03755, United States

Received  March 2014 Revised  April 2014 Published  September 2014

We consider the obstacle problem for the infinity Laplace equation. Given a Lipschitz boundary function and a Lipschitz obstacle we prove the existence and uniqueness of a super infinity-harmonic function constrained to lie above the obstacle which is infinity harmonic where it lies strictly above the obstacle. Moreover, we show that this function is the limit of value functions of a game we call obstacle tug-of-war.
Citation: Juan J. Manfredi, Julio D. Rossi, Stephanie J. Somersille. An obstacle problem for Tug-of-War games. Communications on Pure & Applied Analysis, 2015, 14 (1) : 217-228. doi: 10.3934/cpaa.2015.14.217
References:
[1]

T. Antunović, Y. Peres and S. Sheffield and S. Somersille, Tug-of-War and infinity Laplace equation with vanishing Neumann boundary conditions,, \emph{Communications in Partial Differential Equations}, 37 (2012), 1839.  doi: 10.1080/03605302.2011.642450.  Google Scholar

[2]

S. N. Armstrong, C. K. Smart and S. J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions,, \emph{Proc. Amer. Math. Soc.}, 139 (2011), 1763.  doi: 10.1090/S0002-9939-2010-10666-4.  Google Scholar

[3]

G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, \emph{Bull. Amer. Math. Soc.}, 41 (2004), 439.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[4]

T. Bhattacharya, E. Di Benedetto and J. Manfredi, Limits as $p \to \infty$ of $\Delta_p u_p = f$ and related extremal problems,, \emph{Rend. Sem. Mat. Univ. Politec. Torino}, (1991), 15.   Google Scholar

[5]

C. Bjorland, L. Caffarelli and A. Figalli, Non-local tug-of-war and the infinity fractional Laplacian,, \emph{Comm. Pure. Appl. Math.}, 65 (2012), 337.  doi: 10.1002/cpa.21379.  Google Scholar

[6]

V. Caselles, J. M. Morel and C. Sbert, An axiomatic approach to image interpolation,, \emph{IEEE Trans. Image Process}, 7 (1998), 376.  doi: 10.1109/83.661188.  Google Scholar

[7]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc.}, 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[8]

A. P. Maitra and W. D. Sudderth, Discrete Gambling and Stochastic Games,, Applications of Mathematics 32, (1996).  doi: 10.1007/978-1-4612-4002-0.  Google Scholar

[9]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization of $p$-harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 138 (2010), 881.  doi: 10.1090/S0002-9939-09-10183-1.  Google Scholar

[10]

J. J. Manfredi, M. Parviainen and J. D. Rossi, Dynamic programming principle for tug-of-war games with noise,, \emph{Control Optim. Calc. Var. COCV}, 18 (2012), 81.  doi: 10.1051/cocv/2010046.  Google Scholar

[11]

J. J. Manfredi, M. Parviainen and J. D. Rossi, On the definition and properties of $p$-harmonious functions,, \emph{Annali Scuola Normale Sup. Pisa, XI (2012), 215.   Google Scholar

[12]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, \emph{SIAM J. Math. Anal.}, 42 (2010), 2058.  doi: 10.1137/100782073.  Google Scholar

[13]

Y. Peres, G. Pete and S. Somersille, Biased Tug-of-War, the biased infinity Laplacian and comparison with exponential cones,, \emph{Calc. Var. Partial Differential Equations}, 38 (2010), 541.  doi: 10.1007/s00526-009-0298-2.  Google Scholar

[14]

Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian,, \emph{J. Amer. Math. Soc.}, 22 (2009), 167.  doi: 10.1090/S0894-0347-08-00606-1.  Google Scholar

[15]

Y. Peres and S. Sheffield, Tug-of-war with noise: a game theoretic view of the $p$-Laplacian,, \emph{Duke Math. J.}, 145 (2008), 91.  doi: 10.1215/00127094-2008-048.  Google Scholar

[16]

J. D. Rossi, E. V. Teixeira and J. M. Urbano, Optimal regularity at the free boundary for the infinity obstacle problem,, Preprint., ().   Google Scholar

show all references

References:
[1]

T. Antunović, Y. Peres and S. Sheffield and S. Somersille, Tug-of-War and infinity Laplace equation with vanishing Neumann boundary conditions,, \emph{Communications in Partial Differential Equations}, 37 (2012), 1839.  doi: 10.1080/03605302.2011.642450.  Google Scholar

[2]

S. N. Armstrong, C. K. Smart and S. J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions,, \emph{Proc. Amer. Math. Soc.}, 139 (2011), 1763.  doi: 10.1090/S0002-9939-2010-10666-4.  Google Scholar

[3]

G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, \emph{Bull. Amer. Math. Soc.}, 41 (2004), 439.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[4]

T. Bhattacharya, E. Di Benedetto and J. Manfredi, Limits as $p \to \infty$ of $\Delta_p u_p = f$ and related extremal problems,, \emph{Rend. Sem. Mat. Univ. Politec. Torino}, (1991), 15.   Google Scholar

[5]

C. Bjorland, L. Caffarelli and A. Figalli, Non-local tug-of-war and the infinity fractional Laplacian,, \emph{Comm. Pure. Appl. Math.}, 65 (2012), 337.  doi: 10.1002/cpa.21379.  Google Scholar

[6]

V. Caselles, J. M. Morel and C. Sbert, An axiomatic approach to image interpolation,, \emph{IEEE Trans. Image Process}, 7 (1998), 376.  doi: 10.1109/83.661188.  Google Scholar

[7]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc.}, 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[8]

A. P. Maitra and W. D. Sudderth, Discrete Gambling and Stochastic Games,, Applications of Mathematics 32, (1996).  doi: 10.1007/978-1-4612-4002-0.  Google Scholar

[9]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization of $p$-harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 138 (2010), 881.  doi: 10.1090/S0002-9939-09-10183-1.  Google Scholar

[10]

J. J. Manfredi, M. Parviainen and J. D. Rossi, Dynamic programming principle for tug-of-war games with noise,, \emph{Control Optim. Calc. Var. COCV}, 18 (2012), 81.  doi: 10.1051/cocv/2010046.  Google Scholar

[11]

J. J. Manfredi, M. Parviainen and J. D. Rossi, On the definition and properties of $p$-harmonious functions,, \emph{Annali Scuola Normale Sup. Pisa, XI (2012), 215.   Google Scholar

[12]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, \emph{SIAM J. Math. Anal.}, 42 (2010), 2058.  doi: 10.1137/100782073.  Google Scholar

[13]

Y. Peres, G. Pete and S. Somersille, Biased Tug-of-War, the biased infinity Laplacian and comparison with exponential cones,, \emph{Calc. Var. Partial Differential Equations}, 38 (2010), 541.  doi: 10.1007/s00526-009-0298-2.  Google Scholar

[14]

Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian,, \emph{J. Amer. Math. Soc.}, 22 (2009), 167.  doi: 10.1090/S0894-0347-08-00606-1.  Google Scholar

[15]

Y. Peres and S. Sheffield, Tug-of-war with noise: a game theoretic view of the $p$-Laplacian,, \emph{Duke Math. J.}, 145 (2008), 91.  doi: 10.1215/00127094-2008-048.  Google Scholar

[16]

J. D. Rossi, E. V. Teixeira and J. M. Urbano, Optimal regularity at the free boundary for the infinity obstacle problem,, Preprint., ().   Google Scholar

[1]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[2]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[3]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[4]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[5]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[6]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[7]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[8]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[9]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[10]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[11]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[12]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[13]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[14]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[15]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[16]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[17]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[18]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[19]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[20]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (4)

[Back to Top]