November  2015, 14(6): 2265-2282. doi: 10.3934/cpaa.2015.14.2265

On Fractional Schrödinger Equations in sobolev spaces

1. 

University of Texas at Austin, United States

2. 

Université Aix-Marseille, I2M, France

Received  December 2014 Revised  June 2015 Published  September 2015

Let $\sigma \in (0,1)$ with $\sigma \neq \frac{1}{2}$. We investigate the fractional nonlinear Schrödinger equation in $\mathbb R^d$: \begin{eqnarray} i\partial_tu+(-\Delta)^\sigma u+\mu|u|^{p-1}u=0, u(0)=u_0\in H^s, \end{eqnarray} where $(-\Delta)^\sigma$ is the Fourier multiplier of symbol $|\xi|^{2\sigma}$, and $\mu=\pm 1$. This model has been introduced by Laskin in quantum physics [23]. We establish local well-posedness and ill-posedness in Sobolev spaces for power-type nonlinearities.
Citation: Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265
References:
[1]

Jean Bertoin, Lévy processes, volume 121 of Cambridge Tracts in Mathematics,, Cambridge University Press, (1996).   Google Scholar

[2]

Thierry Cazenave, Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathematics,, New York University, (2003).   Google Scholar

[3]

M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear schrödinger and wave equations,, \emph{arXiv:math/0311048}, (2003).   Google Scholar

[4]

Michael Christ, James Colliander and Terence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations,, \emph{Amer. J. Math.}, 125 (2003), 1235.   Google Scholar

[5]

Y. Cho, M. Fall, H. Hajaiej, P. Markowich and S. Trabelsi, Orbital stability of standing waves of a class of fractional schrödinger equations with a general hartree-type integrand,, \emph{Preprint}, (2013).   Google Scholar

[6]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang and Tohru Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity,, \emph{Funkcial. Ekvac.}, 56 (2013), 193.  doi: 10.1619/fesi.56.193.  Google Scholar

[7]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang and Tohru Ozawa, On the orbital stability of fractional Schrödinger equations,, \emph{Commun. Pure Appl. Anal.}, 13 (2014), 1267.  doi: 10.3934/cpaa.2014.13.1267.  Google Scholar

[8]

Y. Cho, G. Hwang, S. Kwon and S. Lee, Well-posedness and ill-posedness for the cubic fractional schrödinger equations,, \emph{arxiv.org/abs/1311.0082}, (2014).  doi: 10.3934/dcds.2015.35.2863.  Google Scholar

[9]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $R^3$,, \emph{Ann. of Math. (2)}, 167 (2008), 767.  doi: 10.4007/annals.2008.167.767.  Google Scholar

[10]

Yonggeun Cho, Tohru Ozawa and Suxia Xia, Remarks on some dispersive estimates,, \emph{Commun. Pure Appl. Anal.}, 10 (2011), 1121.  doi: 10.3934/cpaa.2011.10.1121.  Google Scholar

[11]

F. M. Christ and M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation,, \emph{J. Funct. Anal.}, 100 (1991), 87.  doi: 10.1016/0022-1236(91)90103-C.  Google Scholar

[12]

Rupert L. Frank and Enno Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $R$,, \emph{Acta Math.}, 210 (2013), 261.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[13]

R. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional laplacian,, \emph{Preprint}., ().   Google Scholar

[14]

Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional schrödinger equation in the radial case,, \emph{Preprint}, (2013).   Google Scholar

[15]

Z. Guo and Y. Wang, Improved strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear schrodinger and wave equation,, \emph{to appear J. Anal. Math.}, (2014).  doi: 10.1007/s11854-014-0025-6.  Google Scholar

[16]

Taoufik Hmidi and Sahbi Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited,, \emph{Int. Math. Res. Not.}, 46 (2005), 2815.  doi: 10.1155/IMRN.2005.2815.  Google Scholar

[17]

Joachim Krieger, Enno Lenzmann and Pierre Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation,, \emph{Arch. Ration. Mech. Anal.}, 209 (2013), 61.  doi: 10.1007/s00205-013-0620-1.  Google Scholar

[18]

Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case,, \emph{Invent. Math.}, 166 (2006), 645.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[19]

Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation,, \emph{Acta Math.}, 201 (2008), 147.  doi: 10.1007/s11511-008-0031-6.  Google Scholar

[20]

Carlos E. Kenig, Gustavo Ponce and Luis Vega, On the ill-posedness of some canonical dispersive equations,, \emph{Duke Math. J.}, 106 (2001), 617.  doi: 10.1215/S0012-7094-01-10638-8.  Google Scholar

[21]

Markus Keel and Terence Tao, Endpoint Strichartz estimates,, \emph{Amer. J. Math.}, 120 (1998), 955.   Google Scholar

[22]

N. S. Landkof, Foundations of modern potential theory,, Springer-Verlag, (1972).   Google Scholar

[23]

Nick Laskin, Fractional Schrödinger equation,, \emph{Phys. Rev. E (3)}, 66 (2002).  doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[24]

Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, \emph{Comm. Math. Phys.}, 87 (): 567.   Google Scholar

show all references

References:
[1]

Jean Bertoin, Lévy processes, volume 121 of Cambridge Tracts in Mathematics,, Cambridge University Press, (1996).   Google Scholar

[2]

Thierry Cazenave, Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathematics,, New York University, (2003).   Google Scholar

[3]

M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear schrödinger and wave equations,, \emph{arXiv:math/0311048}, (2003).   Google Scholar

[4]

Michael Christ, James Colliander and Terence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations,, \emph{Amer. J. Math.}, 125 (2003), 1235.   Google Scholar

[5]

Y. Cho, M. Fall, H. Hajaiej, P. Markowich and S. Trabelsi, Orbital stability of standing waves of a class of fractional schrödinger equations with a general hartree-type integrand,, \emph{Preprint}, (2013).   Google Scholar

[6]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang and Tohru Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity,, \emph{Funkcial. Ekvac.}, 56 (2013), 193.  doi: 10.1619/fesi.56.193.  Google Scholar

[7]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang and Tohru Ozawa, On the orbital stability of fractional Schrödinger equations,, \emph{Commun. Pure Appl. Anal.}, 13 (2014), 1267.  doi: 10.3934/cpaa.2014.13.1267.  Google Scholar

[8]

Y. Cho, G. Hwang, S. Kwon and S. Lee, Well-posedness and ill-posedness for the cubic fractional schrödinger equations,, \emph{arxiv.org/abs/1311.0082}, (2014).  doi: 10.3934/dcds.2015.35.2863.  Google Scholar

[9]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $R^3$,, \emph{Ann. of Math. (2)}, 167 (2008), 767.  doi: 10.4007/annals.2008.167.767.  Google Scholar

[10]

Yonggeun Cho, Tohru Ozawa and Suxia Xia, Remarks on some dispersive estimates,, \emph{Commun. Pure Appl. Anal.}, 10 (2011), 1121.  doi: 10.3934/cpaa.2011.10.1121.  Google Scholar

[11]

F. M. Christ and M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation,, \emph{J. Funct. Anal.}, 100 (1991), 87.  doi: 10.1016/0022-1236(91)90103-C.  Google Scholar

[12]

Rupert L. Frank and Enno Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $R$,, \emph{Acta Math.}, 210 (2013), 261.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[13]

R. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional laplacian,, \emph{Preprint}., ().   Google Scholar

[14]

Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional schrödinger equation in the radial case,, \emph{Preprint}, (2013).   Google Scholar

[15]

Z. Guo and Y. Wang, Improved strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear schrodinger and wave equation,, \emph{to appear J. Anal. Math.}, (2014).  doi: 10.1007/s11854-014-0025-6.  Google Scholar

[16]

Taoufik Hmidi and Sahbi Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited,, \emph{Int. Math. Res. Not.}, 46 (2005), 2815.  doi: 10.1155/IMRN.2005.2815.  Google Scholar

[17]

Joachim Krieger, Enno Lenzmann and Pierre Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation,, \emph{Arch. Ration. Mech. Anal.}, 209 (2013), 61.  doi: 10.1007/s00205-013-0620-1.  Google Scholar

[18]

Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case,, \emph{Invent. Math.}, 166 (2006), 645.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[19]

Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation,, \emph{Acta Math.}, 201 (2008), 147.  doi: 10.1007/s11511-008-0031-6.  Google Scholar

[20]

Carlos E. Kenig, Gustavo Ponce and Luis Vega, On the ill-posedness of some canonical dispersive equations,, \emph{Duke Math. J.}, 106 (2001), 617.  doi: 10.1215/S0012-7094-01-10638-8.  Google Scholar

[21]

Markus Keel and Terence Tao, Endpoint Strichartz estimates,, \emph{Amer. J. Math.}, 120 (1998), 955.   Google Scholar

[22]

N. S. Landkof, Foundations of modern potential theory,, Springer-Verlag, (1972).   Google Scholar

[23]

Nick Laskin, Fractional Schrödinger equation,, \emph{Phys. Rev. E (3)}, 66 (2002).  doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[24]

Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, \emph{Comm. Math. Phys.}, 87 (): 567.   Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[5]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[9]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[14]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[15]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[16]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[17]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[18]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[19]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[20]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (158)
  • HTML views (0)
  • Cited by (42)

Other articles
by authors

[Back to Top]