November  2015, 14(6): 2265-2282. doi: 10.3934/cpaa.2015.14.2265

On Fractional Schrödinger Equations in sobolev spaces

1. 

University of Texas at Austin, United States

2. 

Université Aix-Marseille, I2M, France

Received  December 2014 Revised  June 2015 Published  September 2015

Let $\sigma \in (0,1)$ with $\sigma \neq \frac{1}{2}$. We investigate the fractional nonlinear Schrödinger equation in $\mathbb R^d$: \begin{eqnarray} i\partial_tu+(-\Delta)^\sigma u+\mu|u|^{p-1}u=0, u(0)=u_0\in H^s, \end{eqnarray} where $(-\Delta)^\sigma$ is the Fourier multiplier of symbol $|\xi|^{2\sigma}$, and $\mu=\pm 1$. This model has been introduced by Laskin in quantum physics [23]. We establish local well-posedness and ill-posedness in Sobolev spaces for power-type nonlinearities.
Citation: Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265
References:
[1]

Jean Bertoin, Lévy processes, volume 121 of Cambridge Tracts in Mathematics,, Cambridge University Press, (1996). Google Scholar

[2]

Thierry Cazenave, Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathematics,, New York University, (2003). Google Scholar

[3]

M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear schrödinger and wave equations,, \emph{arXiv:math/0311048}, (2003). Google Scholar

[4]

Michael Christ, James Colliander and Terence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations,, \emph{Amer. J. Math.}, 125 (2003), 1235. Google Scholar

[5]

Y. Cho, M. Fall, H. Hajaiej, P. Markowich and S. Trabelsi, Orbital stability of standing waves of a class of fractional schrödinger equations with a general hartree-type integrand,, \emph{Preprint}, (2013). Google Scholar

[6]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang and Tohru Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity,, \emph{Funkcial. Ekvac.}, 56 (2013), 193. doi: 10.1619/fesi.56.193. Google Scholar

[7]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang and Tohru Ozawa, On the orbital stability of fractional Schrödinger equations,, \emph{Commun. Pure Appl. Anal.}, 13 (2014), 1267. doi: 10.3934/cpaa.2014.13.1267. Google Scholar

[8]

Y. Cho, G. Hwang, S. Kwon and S. Lee, Well-posedness and ill-posedness for the cubic fractional schrödinger equations,, \emph{arxiv.org/abs/1311.0082}, (2014). doi: 10.3934/dcds.2015.35.2863. Google Scholar

[9]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $R^3$,, \emph{Ann. of Math. (2)}, 167 (2008), 767. doi: 10.4007/annals.2008.167.767. Google Scholar

[10]

Yonggeun Cho, Tohru Ozawa and Suxia Xia, Remarks on some dispersive estimates,, \emph{Commun. Pure Appl. Anal.}, 10 (2011), 1121. doi: 10.3934/cpaa.2011.10.1121. Google Scholar

[11]

F. M. Christ and M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation,, \emph{J. Funct. Anal.}, 100 (1991), 87. doi: 10.1016/0022-1236(91)90103-C. Google Scholar

[12]

Rupert L. Frank and Enno Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $R$,, \emph{Acta Math.}, 210 (2013), 261. doi: 10.1007/s11511-013-0095-9. Google Scholar

[13]

R. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional laplacian,, \emph{Preprint}., (). Google Scholar

[14]

Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional schrödinger equation in the radial case,, \emph{Preprint}, (2013). Google Scholar

[15]

Z. Guo and Y. Wang, Improved strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear schrodinger and wave equation,, \emph{to appear J. Anal. Math.}, (2014). doi: 10.1007/s11854-014-0025-6. Google Scholar

[16]

Taoufik Hmidi and Sahbi Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited,, \emph{Int. Math. Res. Not.}, 46 (2005), 2815. doi: 10.1155/IMRN.2005.2815. Google Scholar

[17]

Joachim Krieger, Enno Lenzmann and Pierre Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation,, \emph{Arch. Ration. Mech. Anal.}, 209 (2013), 61. doi: 10.1007/s00205-013-0620-1. Google Scholar

[18]

Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case,, \emph{Invent. Math.}, 166 (2006), 645. doi: 10.1007/s00222-006-0011-4. Google Scholar

[19]

Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation,, \emph{Acta Math.}, 201 (2008), 147. doi: 10.1007/s11511-008-0031-6. Google Scholar

[20]

Carlos E. Kenig, Gustavo Ponce and Luis Vega, On the ill-posedness of some canonical dispersive equations,, \emph{Duke Math. J.}, 106 (2001), 617. doi: 10.1215/S0012-7094-01-10638-8. Google Scholar

[21]

Markus Keel and Terence Tao, Endpoint Strichartz estimates,, \emph{Amer. J. Math.}, 120 (1998), 955. Google Scholar

[22]

N. S. Landkof, Foundations of modern potential theory,, Springer-Verlag, (1972). Google Scholar

[23]

Nick Laskin, Fractional Schrödinger equation,, \emph{Phys. Rev. E (3)}, 66 (2002). doi: 10.1103/PhysRevE.66.056108. Google Scholar

[24]

Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, \emph{Comm. Math. Phys.}, 87 (): 567. Google Scholar

show all references

References:
[1]

Jean Bertoin, Lévy processes, volume 121 of Cambridge Tracts in Mathematics,, Cambridge University Press, (1996). Google Scholar

[2]

Thierry Cazenave, Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathematics,, New York University, (2003). Google Scholar

[3]

M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear schrödinger and wave equations,, \emph{arXiv:math/0311048}, (2003). Google Scholar

[4]

Michael Christ, James Colliander and Terence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations,, \emph{Amer. J. Math.}, 125 (2003), 1235. Google Scholar

[5]

Y. Cho, M. Fall, H. Hajaiej, P. Markowich and S. Trabelsi, Orbital stability of standing waves of a class of fractional schrödinger equations with a general hartree-type integrand,, \emph{Preprint}, (2013). Google Scholar

[6]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang and Tohru Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity,, \emph{Funkcial. Ekvac.}, 56 (2013), 193. doi: 10.1619/fesi.56.193. Google Scholar

[7]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang and Tohru Ozawa, On the orbital stability of fractional Schrödinger equations,, \emph{Commun. Pure Appl. Anal.}, 13 (2014), 1267. doi: 10.3934/cpaa.2014.13.1267. Google Scholar

[8]

Y. Cho, G. Hwang, S. Kwon and S. Lee, Well-posedness and ill-posedness for the cubic fractional schrödinger equations,, \emph{arxiv.org/abs/1311.0082}, (2014). doi: 10.3934/dcds.2015.35.2863. Google Scholar

[9]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $R^3$,, \emph{Ann. of Math. (2)}, 167 (2008), 767. doi: 10.4007/annals.2008.167.767. Google Scholar

[10]

Yonggeun Cho, Tohru Ozawa and Suxia Xia, Remarks on some dispersive estimates,, \emph{Commun. Pure Appl. Anal.}, 10 (2011), 1121. doi: 10.3934/cpaa.2011.10.1121. Google Scholar

[11]

F. M. Christ and M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation,, \emph{J. Funct. Anal.}, 100 (1991), 87. doi: 10.1016/0022-1236(91)90103-C. Google Scholar

[12]

Rupert L. Frank and Enno Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $R$,, \emph{Acta Math.}, 210 (2013), 261. doi: 10.1007/s11511-013-0095-9. Google Scholar

[13]

R. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional laplacian,, \emph{Preprint}., (). Google Scholar

[14]

Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional schrödinger equation in the radial case,, \emph{Preprint}, (2013). Google Scholar

[15]

Z. Guo and Y. Wang, Improved strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear schrodinger and wave equation,, \emph{to appear J. Anal. Math.}, (2014). doi: 10.1007/s11854-014-0025-6. Google Scholar

[16]

Taoufik Hmidi and Sahbi Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited,, \emph{Int. Math. Res. Not.}, 46 (2005), 2815. doi: 10.1155/IMRN.2005.2815. Google Scholar

[17]

Joachim Krieger, Enno Lenzmann and Pierre Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation,, \emph{Arch. Ration. Mech. Anal.}, 209 (2013), 61. doi: 10.1007/s00205-013-0620-1. Google Scholar

[18]

Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case,, \emph{Invent. Math.}, 166 (2006), 645. doi: 10.1007/s00222-006-0011-4. Google Scholar

[19]

Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation,, \emph{Acta Math.}, 201 (2008), 147. doi: 10.1007/s11511-008-0031-6. Google Scholar

[20]

Carlos E. Kenig, Gustavo Ponce and Luis Vega, On the ill-posedness of some canonical dispersive equations,, \emph{Duke Math. J.}, 106 (2001), 617. doi: 10.1215/S0012-7094-01-10638-8. Google Scholar

[21]

Markus Keel and Terence Tao, Endpoint Strichartz estimates,, \emph{Amer. J. Math.}, 120 (1998), 955. Google Scholar

[22]

N. S. Landkof, Foundations of modern potential theory,, Springer-Verlag, (1972). Google Scholar

[23]

Nick Laskin, Fractional Schrödinger equation,, \emph{Phys. Rev. E (3)}, 66 (2002). doi: 10.1103/PhysRevE.66.056108. Google Scholar

[24]

Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, \emph{Comm. Math. Phys.}, 87 (): 567. Google Scholar

[1]

Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863

[2]

Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072

[3]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[4]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[5]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[6]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

[7]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[8]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[9]

Takeshi Wada. A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1359-1374. doi: 10.3934/cpaa.2019066

[10]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[11]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[12]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[13]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[14]

Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010

[15]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[16]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[17]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389

[18]

Ademir Pastor. On three-wave interaction Schrödinger systems with quadratic nonlinearities: Global well-posedness and standing waves. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2217-2242. doi: 10.3934/cpaa.2019100

[19]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[20]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure & Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]