November  2015, 14(6): 2283-2313. doi: 10.3934/cpaa.2015.14.2283

Large time behavior of solution for the full compressible navier-stokes-maxwell system

1. 

Department of Mathematics, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai

2. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, P.R.China

Received  January 2015 Revised  July 2015 Published  September 2015

In this paper, the Cauchy problem for the compressible Navier-Stokes-Maxwell equation is studied in $R^3$, the $L^p$ time decay rate for the global smooth solution is established. Our method is mainly based on a detailed analysis to the Green's function of the linearized system and some elaborate energy estimates. To give the explicit representation of the Green's function, we use the Helmholtz decomposition by which we can decompose the solution into two parts and give the expression to each part. Our results show a sharp difference between the decay of solution for Navier-Stokes-Maxwell system and that for the Navier-Stokes equation.
Citation: Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283
References:
[1]

F. Chen, Introduction to Plasma Physics and Controlled Fusion, Vol. 1, Plenum Press, New York, 1984.

[2]

G. Q. Chen, J. W. Jerome and D. H. Wang, Compressible Euler-Maxwell equations, Transport Theory Statist. Phys., 29 (2000), 311-331. doi: 10.1080/00411450008205877.

[3]

P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511626333.

[4]

R. J. Duan, Global smooth flows for the compressible Euler-Maxwell system: relaxation case, J. Hyperbolic Differ. Equ., 8 (2011), 375-413. doi: 10.1142/S0219891611002421.

[5]

R. J. Duan, Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl. (Singap.), 10 (2012), 133-197. doi: 10.1142/S0219530512500078.

[6]

Y. H. Feng, Y. J. Peng and S. Wang, Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations, Nonlinear Anal. Real World Appl., 19 (2014), 105-116. doi: 10.1016/j.nonrwa.2014.03.004.

[7]

Y. H. Feng, S. Wang and S. Kawashima, Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system, Math. Models Methods Appl. Sci., 14 (2014), 2851-2884. doi: 10.1142/S0218202514500390.

[8]

P. Germain and N. Masmoudi, Global existence for the Euler-Maxwell system, Ann. Sci. Éc. Norm. Supér., 3 (2014), 469-503.

[9]

Y. Guo, Smooth irrotational fluids in the large to the Euler-Poisson system in $\mathbbR^{3+1}$, Comm. Math. Phys., 195 (1998), 249-265. doi: 10.1007/s002200050388.

[10]

M. L. Hajjej and Y. J. Peng, Initial layers and zero-relaxation limits of Euler-Maxwell equations, J. Differential Equations, 252 (2012), 1441-1465. doi: 10.1016/j.jde.2011.09.029.

[11]

F.-M. Huang, M. Mei, Y. Wang and H.-M. Yu, Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors, SIAM J. Math. Anal., 43 (2011), 411-429. doi: 10.1137/100793025.

[12]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181-205.

[13]

S. Kawashima, System of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Manetohydrodynamics, Ph.D thesis, Kyoto University, Kyoto, 1983.

[14]

H. L. Li, A. Matsumura and G. J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathbbR^{3}$, Arch. Rational Mech. Anal., 196 (2010), 681-713. doi: 10.1007/s00205-009-0255-4.

[15]

Q. Q. Liu and C. J. Zhu, Asymptotic stability of stationary solutions to the compressible Euler-Maxwell equations, Indiana Univ. Math. J., 4 (2013), 1203-1235. doi: 10.1512/iumj.2013.62.5047.

[16]

T. P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd-multi dimensions, Comm. Math. Phys., 196 (1998), 145-173. doi: 10.1007/s002200050418.

[17]

T. Luo, R. Natalini and Z. P. Xin, Large-time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59 (1998), 810-830. doi: 10.1137/S0036139996312168.

[18]

P. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer, 1990. doi: 10.1007/978-3-7091-6961-2.

[19]

Y. J. Peng and S. Wang, Convergence of compressible Euler-Maxwell equations to compressible Euler-Poisson equations, Chin. Ann. Math. Ser. B, 28 (2007), 583-602. doi: 10.1007/s11401-005-0556-3.

[20]

Y. J. Peng and S. Wang, Convergence of compressible Euler-Maxwell equations to incompressible Euler equations, Comm. Partial Differential Equations, 33 (2008), 349-376. doi: 10.1080/03605300701318989.

[21]

Y. J. Peng and S. Wang, Rigorous derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations, SIAM J. Math. Anal., 40 (2008), 540-565. doi: 10.1137/070686056.

[22]

Y. Ueda and S. Kawashima, Decay property of regularity-loss type for the Euler-Maxwell system, Methods Appl. Anal., 18 (2011), 245-268. doi: 10.4310/MAA.2011.v18.n3.a1.

[23]

Y. Ueda, S. Wang and S. Kawashima, Dissipative structure of the regularity type and time asymptotic decay of solutions for the Euler-Maxwell system, SIAM J. Math. Anal., 44 (2012), 2002-2017. doi: 10.1137/100806515.

[24]

W. K. Wang and T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimension, J. Differential Equations, 173 (2001), 410-450. doi: 10.1006/jdeq.2000.3937.

[25]

J. W. Yang, R. X. Lian and S. Wang, Incompressible type Euler as scaling limit of compressible Euler-Maxwell equations, Commun. Pure Appl. Anal., 1 (2013), 503-518. doi: 10.3934/cpaa.2013.12.503.

[26]

J. W. Yang and S. Wang, Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations, Sci. China Math., 10 (2014), 2153-2162. doi: 10.1007/s11425-014-4792-4.

show all references

References:
[1]

F. Chen, Introduction to Plasma Physics and Controlled Fusion, Vol. 1, Plenum Press, New York, 1984.

[2]

G. Q. Chen, J. W. Jerome and D. H. Wang, Compressible Euler-Maxwell equations, Transport Theory Statist. Phys., 29 (2000), 311-331. doi: 10.1080/00411450008205877.

[3]

P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511626333.

[4]

R. J. Duan, Global smooth flows for the compressible Euler-Maxwell system: relaxation case, J. Hyperbolic Differ. Equ., 8 (2011), 375-413. doi: 10.1142/S0219891611002421.

[5]

R. J. Duan, Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl. (Singap.), 10 (2012), 133-197. doi: 10.1142/S0219530512500078.

[6]

Y. H. Feng, Y. J. Peng and S. Wang, Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations, Nonlinear Anal. Real World Appl., 19 (2014), 105-116. doi: 10.1016/j.nonrwa.2014.03.004.

[7]

Y. H. Feng, S. Wang and S. Kawashima, Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system, Math. Models Methods Appl. Sci., 14 (2014), 2851-2884. doi: 10.1142/S0218202514500390.

[8]

P. Germain and N. Masmoudi, Global existence for the Euler-Maxwell system, Ann. Sci. Éc. Norm. Supér., 3 (2014), 469-503.

[9]

Y. Guo, Smooth irrotational fluids in the large to the Euler-Poisson system in $\mathbbR^{3+1}$, Comm. Math. Phys., 195 (1998), 249-265. doi: 10.1007/s002200050388.

[10]

M. L. Hajjej and Y. J. Peng, Initial layers and zero-relaxation limits of Euler-Maxwell equations, J. Differential Equations, 252 (2012), 1441-1465. doi: 10.1016/j.jde.2011.09.029.

[11]

F.-M. Huang, M. Mei, Y. Wang and H.-M. Yu, Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors, SIAM J. Math. Anal., 43 (2011), 411-429. doi: 10.1137/100793025.

[12]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181-205.

[13]

S. Kawashima, System of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Manetohydrodynamics, Ph.D thesis, Kyoto University, Kyoto, 1983.

[14]

H. L. Li, A. Matsumura and G. J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathbbR^{3}$, Arch. Rational Mech. Anal., 196 (2010), 681-713. doi: 10.1007/s00205-009-0255-4.

[15]

Q. Q. Liu and C. J. Zhu, Asymptotic stability of stationary solutions to the compressible Euler-Maxwell equations, Indiana Univ. Math. J., 4 (2013), 1203-1235. doi: 10.1512/iumj.2013.62.5047.

[16]

T. P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd-multi dimensions, Comm. Math. Phys., 196 (1998), 145-173. doi: 10.1007/s002200050418.

[17]

T. Luo, R. Natalini and Z. P. Xin, Large-time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59 (1998), 810-830. doi: 10.1137/S0036139996312168.

[18]

P. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer, 1990. doi: 10.1007/978-3-7091-6961-2.

[19]

Y. J. Peng and S. Wang, Convergence of compressible Euler-Maxwell equations to compressible Euler-Poisson equations, Chin. Ann. Math. Ser. B, 28 (2007), 583-602. doi: 10.1007/s11401-005-0556-3.

[20]

Y. J. Peng and S. Wang, Convergence of compressible Euler-Maxwell equations to incompressible Euler equations, Comm. Partial Differential Equations, 33 (2008), 349-376. doi: 10.1080/03605300701318989.

[21]

Y. J. Peng and S. Wang, Rigorous derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations, SIAM J. Math. Anal., 40 (2008), 540-565. doi: 10.1137/070686056.

[22]

Y. Ueda and S. Kawashima, Decay property of regularity-loss type for the Euler-Maxwell system, Methods Appl. Anal., 18 (2011), 245-268. doi: 10.4310/MAA.2011.v18.n3.a1.

[23]

Y. Ueda, S. Wang and S. Kawashima, Dissipative structure of the regularity type and time asymptotic decay of solutions for the Euler-Maxwell system, SIAM J. Math. Anal., 44 (2012), 2002-2017. doi: 10.1137/100806515.

[24]

W. K. Wang and T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimension, J. Differential Equations, 173 (2001), 410-450. doi: 10.1006/jdeq.2000.3937.

[25]

J. W. Yang, R. X. Lian and S. Wang, Incompressible type Euler as scaling limit of compressible Euler-Maxwell equations, Commun. Pure Appl. Anal., 1 (2013), 503-518. doi: 10.3934/cpaa.2013.12.503.

[26]

J. W. Yang and S. Wang, Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations, Sci. China Math., 10 (2014), 2153-2162. doi: 10.1007/s11425-014-4792-4.

[1]

Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic and Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002

[2]

Xiaofeng Hou, Limei Zhu. Serrin-type blowup criterion for full compressible Navier-Stokes-Maxwell system with vacuum. Communications on Pure and Applied Analysis, 2016, 15 (1) : 161-183. doi: 10.3934/cpaa.2016.15.161

[3]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic and Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[4]

Xueke Pu, Min Li. Asymptotic behaviors for the full compressible quantum Navier-Stokes-Maxwell equations with general initial data. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5149-5181. doi: 10.3934/dcdsb.2019055

[5]

Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic and Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010

[6]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[7]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[8]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056

[9]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems and Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[10]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks and Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[11]

Guochun Wu, Han Wang, Yinghui Zhang. Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in $ \mathbb R^3 $. Electronic Research Archive, 2021, 29 (6) : 3889-3908. doi: 10.3934/era.2021067

[12]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[13]

Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic and Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883

[14]

Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016

[15]

Shuang Liang, Shenzhou Zheng. Variable lorentz estimate for stationary stokes system with partially BMO coefficients. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2879-2903. doi: 10.3934/cpaa.2019129

[16]

Yinxia Wang, Hengjun Zhao. Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating. Communications on Pure and Applied Analysis, 2018, 17 (2) : 347-374. doi: 10.3934/cpaa.2018020

[17]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[18]

Yuan Xu, Fujun Zhou, Weihua Gong. Global Well-posedness and Optimal Decay Rate of the Quasi-static Incompressible Navier–Stokes–Fourier–Maxwell–Poisson System. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1537-1565. doi: 10.3934/cpaa.2022028

[19]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[20]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (129)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]