-
Previous Article
Optimal reaction exponent for some qualitative properties of solutions to the $p$-heat equation
- CPAA Home
- This Issue
-
Next Article
An obstacle problem for Tug-of-War games
Optimal matching problems with costs given by Finsler distances
1. | Departament d'Anàlisi Matemàtica, U. de València, Valencia, Spain, Spain |
2. | Departamento de Análisis Matemático, Universidad de Alicante, Ap 99, 03080, Alicante |
References:
[1] |
Mathematical aspects of evolving interfaces (Funchal, 2000), 1-52, Lecture Notes in Math., 1812, Springer, Berlin, 2003.
doi: 10.1007/978-3-540-39189-0_1. |
[2] |
Universitext, Springer, New York, 2011. |
[3] |
J. Optim. Theory Appl., 118 (2003), 1-25.
doi: 10.1023/A:1024751022715. |
[4] |
Adv. Math. Econ., 5 (2003), 1-21.
doi: 10.1007/978-4-431-53979-7_1. |
[5] |
Econ. Theory, 42 (2010), 317-354.
doi: 10.1007/s00199-009-0455-z. |
[6] |
ESAIM COCV, 11 (2005), 57-71.
doi: 10.1051/cocv:2004034. |
[7] |
Econ. Theory, 42 (2010), 275-315.
doi: 10.1007/s00199-008-0427-8. |
[8] |
Econ. Theory, 42 (2010), 437-459.
doi: 10.1007/s00199-008-0426-9. |
[9] |
Journal of Political Economy, 112 (2004), S60-S109. Google Scholar |
[10] |
Current Developments in Mathematics, 1997 (Cambridge, MA), 65-126, Int. Press, Boston, MA, 1999. |
[11] |
Mem. Amer. Math. Soc., 137 (1999), no. 653.
doi: 10.1090/memo/0653. |
[12] |
Pro. Nat. Acad. Sci., 39 (1953), 42-47. |
[13] |
Trans. Amer. Math. Soc., 354 (2002), 1667-1697.
doi: 10.1090/S0002-9947-01-02930-0. |
[14] |
J. Funct. Anal., 260 (2011), 3494-3534.
doi: 10.1016/j.jfa.2011.02.023. |
[15] |
Rev. Mat. Iberoam., 30 (2014), 277-308.
doi: 10.4171/RMI/778. |
[16] |
SIAM J. Math. Anal., 46 (2014), 233-255
doi: 10.1137/120901465. |
[17] |
N. Igbida, J.M. Mazón, J. D. Rossi and J. Toledo, Mass transport problems for costs given by Finsler distances via $p$-Laplacian approximations,, Preprint., (). Google Scholar |
[18] |
Graduate Studies in Mathematics. Vol. 58, 2003.
doi: 10.1007/b12016. |
[19] |
Grundlehren der MathematischenWissenschaften (Fundamental Principles of Mathematical Sciences), vol. 338. Springer, Berlin, 2009.
doi: 10.1007/978-3-540-71050-9. |
show all references
References:
[1] |
Mathematical aspects of evolving interfaces (Funchal, 2000), 1-52, Lecture Notes in Math., 1812, Springer, Berlin, 2003.
doi: 10.1007/978-3-540-39189-0_1. |
[2] |
Universitext, Springer, New York, 2011. |
[3] |
J. Optim. Theory Appl., 118 (2003), 1-25.
doi: 10.1023/A:1024751022715. |
[4] |
Adv. Math. Econ., 5 (2003), 1-21.
doi: 10.1007/978-4-431-53979-7_1. |
[5] |
Econ. Theory, 42 (2010), 317-354.
doi: 10.1007/s00199-009-0455-z. |
[6] |
ESAIM COCV, 11 (2005), 57-71.
doi: 10.1051/cocv:2004034. |
[7] |
Econ. Theory, 42 (2010), 275-315.
doi: 10.1007/s00199-008-0427-8. |
[8] |
Econ. Theory, 42 (2010), 437-459.
doi: 10.1007/s00199-008-0426-9. |
[9] |
Journal of Political Economy, 112 (2004), S60-S109. Google Scholar |
[10] |
Current Developments in Mathematics, 1997 (Cambridge, MA), 65-126, Int. Press, Boston, MA, 1999. |
[11] |
Mem. Amer. Math. Soc., 137 (1999), no. 653.
doi: 10.1090/memo/0653. |
[12] |
Pro. Nat. Acad. Sci., 39 (1953), 42-47. |
[13] |
Trans. Amer. Math. Soc., 354 (2002), 1667-1697.
doi: 10.1090/S0002-9947-01-02930-0. |
[14] |
J. Funct. Anal., 260 (2011), 3494-3534.
doi: 10.1016/j.jfa.2011.02.023. |
[15] |
Rev. Mat. Iberoam., 30 (2014), 277-308.
doi: 10.4171/RMI/778. |
[16] |
SIAM J. Math. Anal., 46 (2014), 233-255
doi: 10.1137/120901465. |
[17] |
N. Igbida, J.M. Mazón, J. D. Rossi and J. Toledo, Mass transport problems for costs given by Finsler distances via $p$-Laplacian approximations,, Preprint., (). Google Scholar |
[18] |
Graduate Studies in Mathematics. Vol. 58, 2003.
doi: 10.1007/b12016. |
[19] |
Grundlehren der MathematischenWissenschaften (Fundamental Principles of Mathematical Sciences), vol. 338. Springer, Berlin, 2009.
doi: 10.1007/978-3-540-71050-9. |
[1] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 |
[2] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021083 |
[3] |
Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021058 |
[4] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[5] |
Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1025-1038. doi: 10.3934/cpaa.2021004 |
[6] |
Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060 |
[7] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[8] |
Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021028 |
[9] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[10] |
Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021107 |
[11] |
Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021029 |
[12] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403 |
[13] |
Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266 |
[14] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[15] |
Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021049 |
[16] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[17] |
Yuxin Tan, Yijing Sun. The Orlicz Minkowski problem involving $ 0 < p < 1 $: From one constant to an infinite interval. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021037 |
[18] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[19] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[20] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021013 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]