January  2015, 14(1): 229-244. doi: 10.3934/cpaa.2015.14.229

Optimal matching problems with costs given by Finsler distances

1. 

Departament d'Anàlisi Matemàtica, U. de València, Valencia, Spain, Spain

2. 

Departamento de Análisis Matemático, Universidad de Alicante, Ap 99, 03080, Alicante

Received  January 2014 Revised  April 2014 Published  September 2014

In this paper we deal with an optimal matching problem, that is, we want to transport two commodities (modeled by two measures that encode the spacial distribution of each commodity) to a given location, where they will match, minimizing the total transport cost that in our case is given by the sum of the two different Finsler distances that the two measures are transported. We perform a method to approximate the matching measure and the pair of Kantorovich potentials associated with this problem taking limit as $p\to \infty$ in a variational system of $p-$Laplacian type.
Citation: J. M. Mazón, Julio D. Rossi, J. Toledo. Optimal matching problems with costs given by Finsler distances. Communications on Pure & Applied Analysis, 2015, 14 (1) : 229-244. doi: 10.3934/cpaa.2015.14.229
References:
[1]

Mathematical aspects of evolving interfaces (Funchal, 2000), 1-52, Lecture Notes in Math., 1812, Springer, Berlin, 2003. doi: 10.1007/978-3-540-39189-0_1.  Google Scholar

[2]

Universitext, Springer, New York, 2011.  Google Scholar

[3]

J. Optim. Theory Appl., 118 (2003), 1-25. doi: 10.1023/A:1024751022715.  Google Scholar

[4]

Adv. Math. Econ., 5 (2003), 1-21. doi: 10.1007/978-4-431-53979-7_1.  Google Scholar

[5]

Econ. Theory, 42 (2010), 317-354. doi: 10.1007/s00199-009-0455-z.  Google Scholar

[6]

ESAIM COCV, 11 (2005), 57-71. doi: 10.1051/cocv:2004034.  Google Scholar

[7]

Econ. Theory, 42 (2010), 275-315. doi: 10.1007/s00199-008-0427-8.  Google Scholar

[8]

Econ. Theory, 42 (2010), 437-459. doi: 10.1007/s00199-008-0426-9.  Google Scholar

[9]

Journal of Political Economy, 112 (2004), S60-S109. Google Scholar

[10]

Current Developments in Mathematics, 1997 (Cambridge, MA), 65-126, Int. Press, Boston, MA, 1999.  Google Scholar

[11]

Mem. Amer. Math. Soc., 137 (1999), no. 653. doi: 10.1090/memo/0653.  Google Scholar

[12]

Pro. Nat. Acad. Sci., 39 (1953), 42-47.  Google Scholar

[13]

Trans. Amer. Math. Soc., 354 (2002), 1667-1697. doi: 10.1090/S0002-9947-01-02930-0.  Google Scholar

[14]

J. Funct. Anal., 260 (2011), 3494-3534. doi: 10.1016/j.jfa.2011.02.023.  Google Scholar

[15]

Rev. Mat. Iberoam., 30 (2014), 277-308. doi: 10.4171/RMI/778.  Google Scholar

[16]

SIAM J. Math. Anal., 46 (2014), 233-255 doi: 10.1137/120901465.  Google Scholar

[17]

N. Igbida, J.M. Mazón, J. D. Rossi and J. Toledo, Mass transport problems for costs given by Finsler distances via $p$-Laplacian approximations,, Preprint., ().   Google Scholar

[18]

Graduate Studies in Mathematics. Vol. 58, 2003. doi: 10.1007/b12016.  Google Scholar

[19]

Grundlehren der MathematischenWissenschaften (Fundamental Principles of Mathematical Sciences), vol. 338. Springer, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

show all references

References:
[1]

Mathematical aspects of evolving interfaces (Funchal, 2000), 1-52, Lecture Notes in Math., 1812, Springer, Berlin, 2003. doi: 10.1007/978-3-540-39189-0_1.  Google Scholar

[2]

Universitext, Springer, New York, 2011.  Google Scholar

[3]

J. Optim. Theory Appl., 118 (2003), 1-25. doi: 10.1023/A:1024751022715.  Google Scholar

[4]

Adv. Math. Econ., 5 (2003), 1-21. doi: 10.1007/978-4-431-53979-7_1.  Google Scholar

[5]

Econ. Theory, 42 (2010), 317-354. doi: 10.1007/s00199-009-0455-z.  Google Scholar

[6]

ESAIM COCV, 11 (2005), 57-71. doi: 10.1051/cocv:2004034.  Google Scholar

[7]

Econ. Theory, 42 (2010), 275-315. doi: 10.1007/s00199-008-0427-8.  Google Scholar

[8]

Econ. Theory, 42 (2010), 437-459. doi: 10.1007/s00199-008-0426-9.  Google Scholar

[9]

Journal of Political Economy, 112 (2004), S60-S109. Google Scholar

[10]

Current Developments in Mathematics, 1997 (Cambridge, MA), 65-126, Int. Press, Boston, MA, 1999.  Google Scholar

[11]

Mem. Amer. Math. Soc., 137 (1999), no. 653. doi: 10.1090/memo/0653.  Google Scholar

[12]

Pro. Nat. Acad. Sci., 39 (1953), 42-47.  Google Scholar

[13]

Trans. Amer. Math. Soc., 354 (2002), 1667-1697. doi: 10.1090/S0002-9947-01-02930-0.  Google Scholar

[14]

J. Funct. Anal., 260 (2011), 3494-3534. doi: 10.1016/j.jfa.2011.02.023.  Google Scholar

[15]

Rev. Mat. Iberoam., 30 (2014), 277-308. doi: 10.4171/RMI/778.  Google Scholar

[16]

SIAM J. Math. Anal., 46 (2014), 233-255 doi: 10.1137/120901465.  Google Scholar

[17]

N. Igbida, J.M. Mazón, J. D. Rossi and J. Toledo, Mass transport problems for costs given by Finsler distances via $p$-Laplacian approximations,, Preprint., ().   Google Scholar

[18]

Graduate Studies in Mathematics. Vol. 58, 2003. doi: 10.1007/b12016.  Google Scholar

[19]

Grundlehren der MathematischenWissenschaften (Fundamental Principles of Mathematical Sciences), vol. 338. Springer, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

[1]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[2]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[3]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021058

[4]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[5]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1025-1038. doi: 10.3934/cpaa.2021004

[6]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[8]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[9]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[10]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[11]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021029

[12]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[13]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[14]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[15]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[16]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[17]

Yuxin Tan, Yijing Sun. The Orlicz Minkowski problem involving $ 0 < p < 1 $: From one constant to an infinite interval. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021037

[18]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[19]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[20]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]