Advanced Search
Article Contents
Article Contents

Very weak solutions of singular porous medium equations with measure data

Abstract Related Papers Cited by
  • We consider non-homogeneous, singular ($ 0 < m < 1 $) porous medium type equations with a non-negative Radon-measure $\mu$ having finite total mass $\mu(E_T)$ on the right-hand side. We deal with a Cauchy-Dirichlet problem for these type of equations, with homogeneous boundary conditions on the parabolic boundary of the domain $E_T$, and we establish the existence of a solution in the sense of distributions. Finally, we show that the constructed solution satisfies linear pointwise estimates via linear Riesz potentials.
    Mathematics Subject Classification: Primary: 35K67; Secondary: 31B15.


    \begin{equation} \\ \end{equation}
  • [1]

    H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341.doi: 10.1007/BF01176474.


    L. Boccardo, Problemi differenziali ellittici e parabolici con dati misure, Boll. Un. Mat. Ital. A, 11 (1997), 439-461.


    L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237-258.doi: 10.1006/jfan.1996.3040.


    L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations, 17 (1992), 641-655.doi: 10.1080/03605309208820857.


    L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 539-551.


    V. Bögelein, F. Duzaar and U. Gianazza, Porous medium type equations with measure data and potential estimates, SIAM J. Math. Anal., 45 (2013), 3283-3330.doi: 10.1137/130925323.


    V. Bögelein, F. Duzaar and U. Gianazza, Sharp boundedness and continuity results for the singular porous medium equation, (2014), preprint available from: https://www.mittag-leffler.se/preprints/files/IML-1314f-31.pdf.


    V. Bögelein, F. Duzaar and P. Marcellini, Parabolic systems with $p,q$-growth: a variational approach, Arch. Ration. Mech. Anal., 210 (2013), 219-267.doi: 10.1007/s00205-013-0646-4.


    V. Bögelein, T. Lukkari and C. Scheven, The obstacle problem for the porous medium equation, (2014), preprint available from: https://www.mittag-leffler.se/preprints/files/IML-1314f-33.pdf


    B. E. Dahlberg and C. E. Kenig, Non-negative solutions to fast diffusions, Rev. Mat. Iberoamericana, 4 (1988), 11-29.doi: 10.4171/RMI/61.


    P. Daskalopoulos and C. E. Kenig, Degenerate Diffusions, EMS Tracts in Mathematics, 1, European Mathematical Society (EMS), Zürich, 2007.doi: 10.4171/033.


    A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the $H$-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl., 170 (1996), 207-240.doi: 10.1007/BF01758989.


    A. Dall'Aglio, D. Giachetti, C. Leone and S. Segura de León, Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 97-126.doi: 10.1016/j.anihpc.2005.02.006.


    A. Dall'Aglio and L. Orsina, Nonlinear parabolic equations with natural growth conditions and $L^1$ data, Nonlinear Anal., 27 (1996), 59-73.doi: 10.1016/0362-546X(94)00363-M.


    E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations, Springer Monographs in Mathematics. Springer, New York, 2012.


    E. DiBenedetto, Degenerate Parabolic Equations, Springer Universitext, Springer, New York, 1993.doi: 10.1007/978-1-4612-0895-2.


    T. Kilpeläinen and J. Malý, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 19 (1992), 591-613.


    T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.doi: 10.1007/BF02392793.


    J. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl., 185 (2006), 411-435.doi: 10.1007/s10231-005-0160-x.


    J. Kinnunen and P. Lindqvist, Definition and properties of supersolutions to the porous medium equation, J. Reine Angew. Math., 618 (2008), 135-168.doi: 10.1515/CRELLE.2008.035.


    T. Lukkari, The porous medium equation with measure data, J. Evol. Equ., 10 (2010), 711-729.doi: 10.1007/s00028-010-0067-x.


    T. Lukkari, The fast diffusion equation with measure data, Nonlinear Differ. Equ. Appl., 19 (2011), 329-343.doi: 10.1007/s00030-011-0131-4.


    J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.doi: 10.1007/BF01762360.

  • 加载中

Article Metrics

HTML views() PDF downloads(100) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint