November  2015, 14(6): 2315-2334. doi: 10.3934/cpaa.2015.14.2315

Krasnosel'skii type formula and translation along trajectories method on the scale of fractional spaces

1. 

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Received  January 2015 Revised  May 2015 Published  September 2015

We provide a global continuation principle of periodic solutions for the equation $\dot u = - Au + F(t,u)$, where $ A:D(A) \to X$ is a sectorial operator on a Banach space $X$ and $F:[0, +\infty) \times X^\alpha \to X$ is a nonlinear map defined on a fractional space $X^\alpha$. The approach that we use in this paper is based upon the theory of topological invariants that applies in the situation when the Poincaré operator associated with the equation is endowed with some form of compactness.
Citation: Piotr Kokocki. Krasnosel'skii type formula and translation along trajectories method on the scale of fractional spaces. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2315-2334. doi: 10.3934/cpaa.2015.14.2315
References:
[1]

A. Ćwiszewski, Topological degree methods for perturbations of operators generating compact $C_0$ semigroups, Journal of Differential Equations, 220 (2006), 434-477. doi: 10.1016/j.jde.2005.04.007.

[2]

A. Ćwiszewski, Degree theory for perturbations of m-accretive operators generating compact semigroups with constraints, Journal of Evolution Equations, 7 (2007), 1-33. doi: 10.1007/s00028-006-0225-3.

[3]

A. Ćwiszewski, Positive periodic solutions of parabolic evolution problems: A translation along trajectories approach, Central European Journal of Mathematics, 9 (2011), 244-268. doi: 10.2478/s11533-011-0010-6.

[4]

A. Ćwiszewski, Forced oscillations in strongly damped beam equation, Topol. Methods Nonlinear Anal., 37 (2011), 259-282.

[5]

A. Ćwiszewski, Averaging principle and hyperbolic evolution equations, Nonlinear Analysis: Theory, Methods and Applications, 75 (2012), 2362-2375 doi: 10.1016/j.na.2011.10.034.

[6]

A. Ćwiszewski and P. Kokocki, Krasnosel'skii type formula and translation along trajectories method for evolution equations, Discrete Continuous Dynam. Systems - B, 22 (2008), 605-628. doi: 10.3934/dcds.2008.22.605.

[7]

A. Ćwiszewski and P. Kokocki, Periodic solutions of nonlinear hyperbolic evolution systems, Journal of Evolution Equations, 10 (2010), 677-710. doi: 10.1007/s00028-010-0066-y.

[8]

J. W. Cholewa and T. Dłotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lectures Note Series, 278, Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.

[9]

K. J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.

[10]

M. Furi and M. P. Pera, Global bifurcation of fixed points and the Poincaré translation operator on manifolds, Annali di Matematica pura ed applicata, 173 (1997), 313-331. doi: 10.1007/BF01783474.

[11]

M. Furi and M. P. Pera, A continuation principle for forced oscillations on differentiable manifolds, Pacific Journal of Mathematics, 121 (1986), 321-338.

[12]

R. E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Mathematics, 586, Springer-Verlag, Berlin, 1977.

[13]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.

[14]

E. Hille and R. Phillips, Functional Analysis and Semi-Groups, American Mathematical Society, Providence, RI, 1957.

[15]

M. Kamenskii, O. Makarenkov and P. Nistri, A continuation principle for a class of periodically perturbed autonomous systems, Mathematische Nachrichten, 281 (2008), 42-61. doi: 10.1002/mana.200610586.

[16]

P. Kokocki, Averaging principle and periodic solutions for nonlinear evolution equations at resonance, Nonlinear Analysis: Theory, Methods and Applications, 85 (2013), 253-278. doi: 10.1016/j.na.2013.02.030.

[17]

B. Laloux and J. Mawhin, Multiplicity, Leray-Schauder formula, and bifurcation, Jourbal of Differential Equations, 24 (1977), 309-322.

[18]

J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, Amer. Math. Soc., Providence, R.I., 1979.

[19]

J. Mawhin, Continuation theorems and periodic solutions of ordinary differential equations, in Topological methods in differential equations and inclusions, Kluwer Acad. Publ., Dordrecht, 1995.

[20]

J. Mawhin, Continuation theorems for nonlinear operator equations: the legacy of Leray and Schauder, Travaux mathmatiques, Centre Univ. Luxembourg, Luxembourg, 1999.

[21]

J. Mawhin, Topological bifurcation theory: old and new, Progress in variational methods, World Sci. Publ., Hackensack, 2011.

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[23]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.

show all references

References:
[1]

A. Ćwiszewski, Topological degree methods for perturbations of operators generating compact $C_0$ semigroups, Journal of Differential Equations, 220 (2006), 434-477. doi: 10.1016/j.jde.2005.04.007.

[2]

A. Ćwiszewski, Degree theory for perturbations of m-accretive operators generating compact semigroups with constraints, Journal of Evolution Equations, 7 (2007), 1-33. doi: 10.1007/s00028-006-0225-3.

[3]

A. Ćwiszewski, Positive periodic solutions of parabolic evolution problems: A translation along trajectories approach, Central European Journal of Mathematics, 9 (2011), 244-268. doi: 10.2478/s11533-011-0010-6.

[4]

A. Ćwiszewski, Forced oscillations in strongly damped beam equation, Topol. Methods Nonlinear Anal., 37 (2011), 259-282.

[5]

A. Ćwiszewski, Averaging principle and hyperbolic evolution equations, Nonlinear Analysis: Theory, Methods and Applications, 75 (2012), 2362-2375 doi: 10.1016/j.na.2011.10.034.

[6]

A. Ćwiszewski and P. Kokocki, Krasnosel'skii type formula and translation along trajectories method for evolution equations, Discrete Continuous Dynam. Systems - B, 22 (2008), 605-628. doi: 10.3934/dcds.2008.22.605.

[7]

A. Ćwiszewski and P. Kokocki, Periodic solutions of nonlinear hyperbolic evolution systems, Journal of Evolution Equations, 10 (2010), 677-710. doi: 10.1007/s00028-010-0066-y.

[8]

J. W. Cholewa and T. Dłotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lectures Note Series, 278, Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.

[9]

K. J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.

[10]

M. Furi and M. P. Pera, Global bifurcation of fixed points and the Poincaré translation operator on manifolds, Annali di Matematica pura ed applicata, 173 (1997), 313-331. doi: 10.1007/BF01783474.

[11]

M. Furi and M. P. Pera, A continuation principle for forced oscillations on differentiable manifolds, Pacific Journal of Mathematics, 121 (1986), 321-338.

[12]

R. E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Mathematics, 586, Springer-Verlag, Berlin, 1977.

[13]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.

[14]

E. Hille and R. Phillips, Functional Analysis and Semi-Groups, American Mathematical Society, Providence, RI, 1957.

[15]

M. Kamenskii, O. Makarenkov and P. Nistri, A continuation principle for a class of periodically perturbed autonomous systems, Mathematische Nachrichten, 281 (2008), 42-61. doi: 10.1002/mana.200610586.

[16]

P. Kokocki, Averaging principle and periodic solutions for nonlinear evolution equations at resonance, Nonlinear Analysis: Theory, Methods and Applications, 85 (2013), 253-278. doi: 10.1016/j.na.2013.02.030.

[17]

B. Laloux and J. Mawhin, Multiplicity, Leray-Schauder formula, and bifurcation, Jourbal of Differential Equations, 24 (1977), 309-322.

[18]

J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, Amer. Math. Soc., Providence, R.I., 1979.

[19]

J. Mawhin, Continuation theorems and periodic solutions of ordinary differential equations, in Topological methods in differential equations and inclusions, Kluwer Acad. Publ., Dordrecht, 1995.

[20]

J. Mawhin, Continuation theorems for nonlinear operator equations: the legacy of Leray and Schauder, Travaux mathmatiques, Centre Univ. Luxembourg, Luxembourg, 1999.

[21]

J. Mawhin, Topological bifurcation theory: old and new, Progress in variational methods, World Sci. Publ., Hackensack, 2011.

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[23]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.

[1]

Saulo R.M. Barros, Antônio L. Pereira, Cláudio Possani, Adilson Simonis. Spatially periodic equilibria for a non local evolution equation. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 937-948. doi: 10.3934/dcds.2003.9.937

[2]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[3]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[4]

Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765

[5]

Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861

[6]

Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971

[7]

Christian Pötzsche, Evamaria Russ. Topological decoupling and linearization of nonautonomous evolution equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1235-1268. doi: 10.3934/dcdss.2016050

[8]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations and Control Theory, 2022, 11 (3) : 621-633. doi: 10.3934/eect.2021017

[9]

Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1345-1360. doi: 10.3934/dcdsb.2019230

[10]

Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Evolution of mixed dispersal in periodic environments. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2047-2072. doi: 10.3934/dcdsb.2012.17.2047

[11]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Periodic solutions for implicit evolution inclusions. Evolution Equations and Control Theory, 2019, 8 (3) : 621-631. doi: 10.3934/eect.2019029

[12]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[13]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[14]

Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 47-66. doi: 10.3934/dcdss.2020003

[15]

Matthieu Arfeux, Jan Kiwi. Topological cubic polynomials with one periodic ramification point. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1799-1811. doi: 10.3934/dcds.2020094

[16]

Víctor Manuel Jiménez, Manuel de León. The evolution equation: An application of groupoids to material evolution. Journal of Geometric Mechanics, 2022  doi: 10.3934/jgm.2022001

[17]

Gang Li, Fen Gu, Feida Jiang. Positive viscosity solutions of a third degree homogeneous parabolic infinity Laplace equation. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1449-1462. doi: 10.3934/cpaa.2020071

[18]

Fatih Bayazit, Ulrich Groh, Rainer Nagel. Floquet representations and asymptotic behavior of periodic evolution families. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4795-4810. doi: 10.3934/dcds.2013.33.4795

[19]

Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure and Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5

[20]

Leszek Gasiński, Nikolaos S. Papageorgiou. Periodic solutions for nonlinear nonmonotone evolution inclusions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 219-238. doi: 10.3934/dcdsb.2018015

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (100)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]