November  2015, 14(6): 2335-2362. doi: 10.3934/cpaa.2015.14.2335

Nonlinear elliptic systems involving the fractional Laplacian in the unit ball and on a half space

1. 

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA, United States

Received  January 2015 Revised  June 2015 Published  September 2015

In this paper, we study the following nonlinear elliptic system \begin{eqnarray} \left\{\begin{array}{ll} (-\Delta)^{\frac{\alpha}{2}}u_i=f_i(u),\ x\in \Omega,\quad i=1,...,m, \\ u_i(x)=0, \quad \quad\quad \ \ x\in \Omega^c,\quad i=1,...,m, \end{array} \right. \end{eqnarray} where $0 < \alpha < 2$ and $\Omega$ is either the unit ball $B_1(0)=\{x\in \mathbb R^n | \|x\| < 1 \}$ or the half space $\mathbb R_+^n = \{x=(x_1,...,x_n)\in \mathbb R^n | x_n > 0\}$. Instead of investigating the pseudo differential system directly, we study an equivalent integral system, i.e., \begin{eqnarray} u_i(x)=\int_{B_1(0)}G_1(x,y)f_i(u(y))dy,\quad x\in B_1(0),\quad i=1,...,m, \end{eqnarray} and \begin{eqnarray} u_i(x)=C_ix_n^{\frac{\alpha}{2}}+\int_{\mathbb{R}_+^n}G_{\infty}(x,y)f_i(u(y))dy,\quad x\in \mathbb{R}_+^n,\quad i=1,...,m, \end{eqnarray} where $C_i$ are non-negative constants, $G_1(x,y)$ is Green's function for $B_1(0)$ and $G_{\infty}(x,y)$ is Green function of $\mathbb R_+^n$. We use the method of moving planes in integral forms to prove the radial symmetry and monotonicity of positive solutions in $B_1(0)$ and non-existence of positive solutions in $\mathbb R_+^n$. Moreover, we also study regularity of positive solutions in $B_1(0)$.
Citation: Chenchen Mou. Nonlinear elliptic systems involving the fractional Laplacian in the unit ball and on a half space. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2335-2362. doi: 10.3934/cpaa.2015.14.2335
References:
[1]

X. Cabre and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv. Math.}, 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[2]

L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,, \emph{Invent. Math.}, 171 (2008), 425.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[4]

W. Chen, Y. Fang and R. Yang, Semilinear equations involving the fractional Laplacian on domains, preprint,, \arXiv{1309.7499}., ().   Google Scholar

[5]

W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space,, \emph{Adv. Math.}, 274 (2015), 167.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[6]

W. Chen and C. Li, Regularity of solutions for a system of integral equation,, \emph{Commun. Pure Appl. Anal.}, 4 (2005), 1.   Google Scholar

[7]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, \emph{Acta Math. Sci. Ser. B Engl. Ed.}, 29 (2009), 946.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[8]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS Series on Differential Equations & Dynamical Systems, 4 (2010).  doi: 978-1-60133-006-2.  Google Scholar

[9]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, \emph{Discrete Contin. Dyn. Syst.}, 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, \emph{Comm. Partial Differential Equations}, 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[11]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[12]

W. Chen, C. Li, L. Zhang and T. Cheng, A Liouville theorem for $\alpha$-harmonic functions in $\mathbb R_+^n$,, \emph{Discrete Contin. Dyn. Syst.}, ().   Google Scholar

[13]

W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems,, \emph{J. Math. Anal. Appl.}, 377 (2011), 744.  doi: 10.1016/j.jmaa.2010.11.035.  Google Scholar

[14]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space,, \emph{Adv. in Math.}, 229 (2012), 2835.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[15]

Q. Guan, Integration by parts formula for regional fractional Laplacian,, \emph{Comm. Math. Phys.}, 266 (2006), 289.  doi: 10.1007/s00220-006-0054-9.  Google Scholar

[16]

Q. Guan and Z. Ma, Reflected symmetric $\alpha$-stable processes and regional fractional Laplacian,, \emph{Probab. Theory Related Fields}, 134 (2006), 649.  doi: 10.1007/s00440-005-0438-3.  Google Scholar

[17]

T. Kulczycki, Properties of Green function of symmetric stable processes,, \emph{Probab. Math. Statist.}, 17 (1997), 339.   Google Scholar

[18]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, \emph{Adv. in Math.}, 3 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[19]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplcian: regularity up to the boundary,, \emph{J. Math. Pures Appl.}, 101 (2014), 275.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[20]

X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian,, \emph{Arch. Ration. Mech. Anal.}, 213 (2014), 723.  doi: 10.1007/s00205-014-0740-2.  Google Scholar

[21]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, \emph{Comm. Pure Appl. Math.}, 60 (2007), 67.  doi: 10.1002/cpa.20153.  Google Scholar

show all references

References:
[1]

X. Cabre and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv. Math.}, 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[2]

L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,, \emph{Invent. Math.}, 171 (2008), 425.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[4]

W. Chen, Y. Fang and R. Yang, Semilinear equations involving the fractional Laplacian on domains, preprint,, \arXiv{1309.7499}., ().   Google Scholar

[5]

W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space,, \emph{Adv. Math.}, 274 (2015), 167.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[6]

W. Chen and C. Li, Regularity of solutions for a system of integral equation,, \emph{Commun. Pure Appl. Anal.}, 4 (2005), 1.   Google Scholar

[7]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, \emph{Acta Math. Sci. Ser. B Engl. Ed.}, 29 (2009), 946.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[8]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS Series on Differential Equations & Dynamical Systems, 4 (2010).  doi: 978-1-60133-006-2.  Google Scholar

[9]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, \emph{Discrete Contin. Dyn. Syst.}, 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, \emph{Comm. Partial Differential Equations}, 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[11]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[12]

W. Chen, C. Li, L. Zhang and T. Cheng, A Liouville theorem for $\alpha$-harmonic functions in $\mathbb R_+^n$,, \emph{Discrete Contin. Dyn. Syst.}, ().   Google Scholar

[13]

W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems,, \emph{J. Math. Anal. Appl.}, 377 (2011), 744.  doi: 10.1016/j.jmaa.2010.11.035.  Google Scholar

[14]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space,, \emph{Adv. in Math.}, 229 (2012), 2835.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[15]

Q. Guan, Integration by parts formula for regional fractional Laplacian,, \emph{Comm. Math. Phys.}, 266 (2006), 289.  doi: 10.1007/s00220-006-0054-9.  Google Scholar

[16]

Q. Guan and Z. Ma, Reflected symmetric $\alpha$-stable processes and regional fractional Laplacian,, \emph{Probab. Theory Related Fields}, 134 (2006), 649.  doi: 10.1007/s00440-005-0438-3.  Google Scholar

[17]

T. Kulczycki, Properties of Green function of symmetric stable processes,, \emph{Probab. Math. Statist.}, 17 (1997), 339.   Google Scholar

[18]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, \emph{Adv. in Math.}, 3 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[19]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplcian: regularity up to the boundary,, \emph{J. Math. Pures Appl.}, 101 (2014), 275.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[20]

X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian,, \emph{Arch. Ration. Mech. Anal.}, 213 (2014), 723.  doi: 10.1007/s00205-014-0740-2.  Google Scholar

[21]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, \emph{Comm. Pure Appl. Math.}, 60 (2007), 67.  doi: 10.1002/cpa.20153.  Google Scholar

[1]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[2]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[10]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[11]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[14]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[15]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[16]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[17]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[18]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]