-
Previous Article
The Liouville theorems for elliptic equations with nonstandard growth
- CPAA Home
- This Issue
-
Next Article
Nonlinear elliptic systems involving the fractional Laplacian in the unit ball and on a half space
Harnack inequality for degenerate elliptic equations and sum operators
1. | Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Italy |
References:
[1] |
S. M. Buckley, Inequalities of John-Nirenberg type in doubling spaces, J. Anal. Math., 79 (1999), 215-240.
doi: 10.1007/BF02788242. |
[2] |
F. Chiarenza and M. Frasca, A remark on a paper by C. Fefferman, Proc. Amer. Math. Soc., 108 (1990), 407-409.
doi: 10.2307/2048289. |
[3] |
G. Di Fazio, M. S. Fanciullo and P. Zamboni, Harnack inequality for a class of strongly degenerate elliptic operators formed by Hörmander vector fields, Manuscripta Math., 135 (2011), 361-380.
doi: 10.1007/s00229-010-0420-y. |
[4] |
G. Di Fazio, M. S. Fanciullo and P. Zamboni, Regularity for a class of strongly degenerate quasilinear operators, J. Differential Equations, 255 (2013), 3920-3939.
doi: 10.1016/j.jde.2013.07.062. |
[5] |
G. Di Fazio, M. S. Fanciullo and P. Zamboni, Sum Operators and Fefferman - Phong Inequalities, Geometric Methods in PDE's, Springer INdAM Series, Vol. 13 (2015). |
[6] |
G. Di Fazio and P. Zamboni, A Fefferman-Poincaré type inequality for Carnot-Carathéodory vector fields, Proc. Amer. Math. Soc., 130 (2002), 2655-2660.
doi: 10.1090/S0002-9939-02-06394-3. |
[7] |
G. Di Fazio and P. Zamboni, Hölder continuity for quasilinear subelliptic equations in Carnot Carathéodory spaces, Math. Nachr., 272 (2004), 3-10.
doi: 10.1002/mana.200310185. |
[8] |
G. Di Fazio and P. Zamboni, Regularity for quasilinear degenerate elliptic equations, Math. Z., 253 (2006), 787-803.
doi: 10.1007/s00209-006-0933-y. |
[9] |
G. Di Fazio and P. Zamboni, Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 9 (2006), 485-504. |
[10] |
B. Franchi, G. Lu and R. L. Wheeden, Representation formulas and weighted Poincaré type inequalities for Hörmander vector fields, Ann. inst. Fourier tome, 45 (1995), 577-604. |
[11] |
B. Franchi, G. Lu and R. L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Int. Math. Res. Not., (1996), 1-14.
doi: 10.1155/S1073792896000013. |
[12] |
B. Franchi, C. Perez and R. L. Wheeden, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. of functional Analysis, 153 (1998), 108-146.
doi: 10.1006/jfan.1997.3175. |
[13] |
B. Franchi, C. Perez and R. L. Wheeden, A sum operator with applications to self-improving properties of Poincaré inequalities in metric spaces, The Journal of Fourier Analysis and Applications, 9 (2003), 511-540.
doi: 10.1007/s00041-003-0025-x. |
[14] |
B. Franchi, R. Serapioni and F. Serra Cassano, Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B (7), 11 (1997), 83-117. |
[15] |
C. E. Gutierrez, Harnack's inequality for degenerate Schrödinger operators, Trans. AMS, 312 (1989), 403-419.
doi: 10.2307/2001222. |
[16] |
P. Hajlasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc., 688, (2000).
doi: 10.1090/memo/0688. |
[17] |
J. Heinonen and P. Koskela, Quasiconformal maps on metric spaces with controlled geometry, Acta Math., 181 (1998), 1-61.
doi: 10.1007/BF02392747. |
[18] |
D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J., 53 (1986), 503-523.
doi: 10.1215/S0012-7094-86-05329-9. |
[19] |
G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana, 8(1992), 367-439.
doi: 10.4171/RMI/129. |
[20] |
G. Lu, The sharp Poincaré inequality for free vector fields: an endpoint result, Rev. Mat. Iberoamericana, 10 (1994), 453-466.
doi: 10.4171/RMI/158. |
[21] |
G. Lu, A Fefferman-Phong type inequality for degenerate vector fields and applications, Panamer. Math. J., 6 (1996), 37-57. |
[22] |
G. Lu and R. L. Wheeden, An optimal representation formula for Carnot- Carathéodory vector fields, Bull. London Math. Soc., 30 (1998), 578-584.
doi: 10.1112/S0024609398004895. |
[23] |
M. A. Ragusa and P. Zamboni, Local regularity of solutions to quasilinear elliptic equations with general structure, Commun. Appl. Anal., 3 (1999), 131-147. |
[24] |
J. Serrin, Local behavior of solutions of quasilinear equations, Acta Math., 111 (1964), 247-302. |
[25] |
P. Zamboni, Some function spaces and elliptic partial differential equations, Le Matematiche (Catania), 42 (1987), 171-178. |
[26] |
P. Zamboni, The Harnack inequality for quasilinear elliptic equations under minimal assumptions, Manuscripta Math., 102 (2000), 311-323.
doi: 10.1007/s002290050002. |
[27] |
P. Zamboni, Unique continuation for non-negative solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc., 64 (2001), 149-156.
doi: 10.1017/S0004972700019766. |
[28] |
P. Zamboni, Hölder continuity for solutions of linear degenerate elliptic equations under minimal assumptions, J. Differential Equations, 182 (2002), 121-140.
doi: 10.1006/jdeq.2001.4094. |
show all references
References:
[1] |
S. M. Buckley, Inequalities of John-Nirenberg type in doubling spaces, J. Anal. Math., 79 (1999), 215-240.
doi: 10.1007/BF02788242. |
[2] |
F. Chiarenza and M. Frasca, A remark on a paper by C. Fefferman, Proc. Amer. Math. Soc., 108 (1990), 407-409.
doi: 10.2307/2048289. |
[3] |
G. Di Fazio, M. S. Fanciullo and P. Zamboni, Harnack inequality for a class of strongly degenerate elliptic operators formed by Hörmander vector fields, Manuscripta Math., 135 (2011), 361-380.
doi: 10.1007/s00229-010-0420-y. |
[4] |
G. Di Fazio, M. S. Fanciullo and P. Zamboni, Regularity for a class of strongly degenerate quasilinear operators, J. Differential Equations, 255 (2013), 3920-3939.
doi: 10.1016/j.jde.2013.07.062. |
[5] |
G. Di Fazio, M. S. Fanciullo and P. Zamboni, Sum Operators and Fefferman - Phong Inequalities, Geometric Methods in PDE's, Springer INdAM Series, Vol. 13 (2015). |
[6] |
G. Di Fazio and P. Zamboni, A Fefferman-Poincaré type inequality for Carnot-Carathéodory vector fields, Proc. Amer. Math. Soc., 130 (2002), 2655-2660.
doi: 10.1090/S0002-9939-02-06394-3. |
[7] |
G. Di Fazio and P. Zamboni, Hölder continuity for quasilinear subelliptic equations in Carnot Carathéodory spaces, Math. Nachr., 272 (2004), 3-10.
doi: 10.1002/mana.200310185. |
[8] |
G. Di Fazio and P. Zamboni, Regularity for quasilinear degenerate elliptic equations, Math. Z., 253 (2006), 787-803.
doi: 10.1007/s00209-006-0933-y. |
[9] |
G. Di Fazio and P. Zamboni, Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 9 (2006), 485-504. |
[10] |
B. Franchi, G. Lu and R. L. Wheeden, Representation formulas and weighted Poincaré type inequalities for Hörmander vector fields, Ann. inst. Fourier tome, 45 (1995), 577-604. |
[11] |
B. Franchi, G. Lu and R. L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Int. Math. Res. Not., (1996), 1-14.
doi: 10.1155/S1073792896000013. |
[12] |
B. Franchi, C. Perez and R. L. Wheeden, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. of functional Analysis, 153 (1998), 108-146.
doi: 10.1006/jfan.1997.3175. |
[13] |
B. Franchi, C. Perez and R. L. Wheeden, A sum operator with applications to self-improving properties of Poincaré inequalities in metric spaces, The Journal of Fourier Analysis and Applications, 9 (2003), 511-540.
doi: 10.1007/s00041-003-0025-x. |
[14] |
B. Franchi, R. Serapioni and F. Serra Cassano, Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B (7), 11 (1997), 83-117. |
[15] |
C. E. Gutierrez, Harnack's inequality for degenerate Schrödinger operators, Trans. AMS, 312 (1989), 403-419.
doi: 10.2307/2001222. |
[16] |
P. Hajlasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc., 688, (2000).
doi: 10.1090/memo/0688. |
[17] |
J. Heinonen and P. Koskela, Quasiconformal maps on metric spaces with controlled geometry, Acta Math., 181 (1998), 1-61.
doi: 10.1007/BF02392747. |
[18] |
D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J., 53 (1986), 503-523.
doi: 10.1215/S0012-7094-86-05329-9. |
[19] |
G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana, 8(1992), 367-439.
doi: 10.4171/RMI/129. |
[20] |
G. Lu, The sharp Poincaré inequality for free vector fields: an endpoint result, Rev. Mat. Iberoamericana, 10 (1994), 453-466.
doi: 10.4171/RMI/158. |
[21] |
G. Lu, A Fefferman-Phong type inequality for degenerate vector fields and applications, Panamer. Math. J., 6 (1996), 37-57. |
[22] |
G. Lu and R. L. Wheeden, An optimal representation formula for Carnot- Carathéodory vector fields, Bull. London Math. Soc., 30 (1998), 578-584.
doi: 10.1112/S0024609398004895. |
[23] |
M. A. Ragusa and P. Zamboni, Local regularity of solutions to quasilinear elliptic equations with general structure, Commun. Appl. Anal., 3 (1999), 131-147. |
[24] |
J. Serrin, Local behavior of solutions of quasilinear equations, Acta Math., 111 (1964), 247-302. |
[25] |
P. Zamboni, Some function spaces and elliptic partial differential equations, Le Matematiche (Catania), 42 (1987), 171-178. |
[26] |
P. Zamboni, The Harnack inequality for quasilinear elliptic equations under minimal assumptions, Manuscripta Math., 102 (2000), 311-323.
doi: 10.1007/s002290050002. |
[27] |
P. Zamboni, Unique continuation for non-negative solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc., 64 (2001), 149-156.
doi: 10.1017/S0004972700019766. |
[28] |
P. Zamboni, Hölder continuity for solutions of linear degenerate elliptic equations under minimal assumptions, J. Differential Equations, 182 (2002), 121-140.
doi: 10.1006/jdeq.2001.4094. |
[1] |
Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043 |
[2] |
Daniela De Silva, Ovidiu Savin. A note on higher regularity boundary Harnack inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6155-6163. doi: 10.3934/dcds.2015.35.6155 |
[3] |
Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153 |
[4] |
Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557 |
[5] |
Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975 |
[6] |
James Scott, Tadele Mengesha. A fractional Korn-type inequality. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3315-3343. doi: 10.3934/dcds.2019137 |
[7] |
Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093 |
[8] |
Teo Kukuljan. Higher order parabolic boundary Harnack inequality in C1 and Ck, α domains. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2667-2698. doi: 10.3934/dcds.2021207 |
[9] |
Shu-Yu Hsu. Some results for the Perelman LYH-type inequality. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3535-3554. doi: 10.3934/dcds.2014.34.3535 |
[10] |
Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad, Saed F. Mallak, Hussam Alrabaiah. Lyapunov type inequality in the frame of generalized Caputo derivatives. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2335-2355. doi: 10.3934/dcdss.2020212 |
[11] |
Piotr Pokora. The orbifold Langer-Miyaoka-Yau Inequality and Hirzebruch-type inequalities. Electronic Research Announcements, 2017, 24: 21-27. doi: 10.3934/era.2017.24.003 |
[12] |
José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138 |
[13] |
Jun Zhou, Jun Shen, Weinian Zhang. A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7207-7234. doi: 10.3934/dcds.2016114 |
[14] |
Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320 |
[15] |
Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207 |
[16] |
Jorge A. Becerril, Javier F. Rosenblueth. Necessity for isoperimetric inequality constraints. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1129-1158. doi: 10.3934/dcds.2017047 |
[17] |
Gisella Croce, Bernard Dacorogna. On a generalized Wirtinger inequality. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1329-1341. doi: 10.3934/dcds.2003.9.1329 |
[18] |
Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505 |
[19] |
Vincenzo Ferone, Carlo Nitsch, Cristina Trombetti. On a conjectured reverse Faber-Krahn inequality for a Steklov--type Laplacian eigenvalue. Communications on Pure and Applied Analysis, 2015, 14 (1) : 63-82. doi: 10.3934/cpaa.2015.14.63 |
[20] |
Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]