November  2015, 14(6): 2393-2409. doi: 10.3934/cpaa.2015.14.2393

Symmetry of solutions to semilinear equations involving the fractional laplacian

1. 

School of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007

Received  February 2015 Revised  July 2015 Published  September 2015

Let $0<\alpha<2$ be any real number. Let $\Omega\subset\mathbb{R}^n$ be a bounded or an unbounded domain which is convex and symmetric in $x_1$ direction. We investigate the following Dirichlet problem involving the fractional Laplacian: \begin{equation} \left\{\begin{array}{ll} (-\Delta)^{\alpha/2} u(x)=f(x,u), & \qquad x\in\Omega,                                              (1)\\ u(x)\equiv0, & \qquad x\notin\Omega. \end{array}\right. \end{equation}
    Applying a direct method of moving planes for the fractional Laplacian, with the help of several maximum principles for anti-symmetric functions, we prove the monotonicity and symmetry of positive solutions in $x_1$ direction as well as nonexistence of positive solutions under various conditions on $f$ and on the solutions $u$. We also extend the results to some more complicated cases.
Citation: Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393
References:
[1]

F. V. Atkinson and L. A. Peletier, Elliptic equations with nearly critical growth,, J. Diff. Equ., 70 (1987), 349.  doi: 10.1016/0022-0396(87)90156-2.  Google Scholar

[2]

H. Berestycki, L. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a halfspace,, in Boundary Value Problems for Partial Differential Equations and Applications (eds. volume dedicated to E. Magenes, (1993), 27.   Google Scholar

[3]

H. Berestycki, L. Caffarelli and L. Nirenberg, Inequalities for second order elliptic equations with applications to unbounded domains I,, Duke Math. J., 81 (1996), 467.  doi: 10.1215/S0012-7094-96-08117-X.  Google Scholar

[4]

H. Berestycki, L. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains,, Comm. Pure Appl. Math., 50 (1997), 1089.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.  Google Scholar

[5]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil Mat. (N.S.), 22 (1991), 1.  doi: 10.1007/BF01244896.  Google Scholar

[6]

H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations,, J. Geom. and Physics, 5 (1988), 237.  doi: 10.1016/0393-0440(88)90006-X.  Google Scholar

[7]

C. Brandle, E. Colorado, A. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian,, Proc. Royal Soc. Edinburgh, 143 (2013), 39.  doi: 10.1017/S0308210511000175.  Google Scholar

[8]

H. Brezis and L. A. Peletier, Asymptotics for elliptic equations involving critical growth,, in Partial Differential Equations and the Calculus of Variations (Progr. Nonlinear Differential Equations Appl., (1989), 149.   Google Scholar

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[10]

L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems,, Discrete Contin. Dyn. Sys., 33 (2013), 3937.  doi: 10.3934/dcds.2013.33.3937.  Google Scholar

[11]

W. Chen, Y. Fang and C. Li, Super poly-harmonic property of solutions for Navier boundary problems on a half space,, J. Funct. Anal., 256 (2013), 1522.  doi: 10.1016/j.jfa.2013.06.010.  Google Scholar

[12]

W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space,, Advances in Math., 274 (2015), 167.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[13]

W. Chen and C. Li, Regularity of solutions for a system of integral equation,, Comm. Pure Appl. Anal., 4 (2005), 1.   Google Scholar

[14]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Disc. Cont. Dyn. Sys., 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[15]

W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, preprint,, , ().   Google Scholar

[16]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[17]

D. Chen and L. Ma, A Liouville type theorem for an integral system,, Comm. Pure Appl. Anal., 5 (2006), 855.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[18]

W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems,, J. Math. Anal. Appl., 377 (2011), 744.  doi: 10.1016/j.jmaa.2010.11.035.  Google Scholar

[19]

C. V. Coffman, Uniqueness of the ground state solution for $\Delta u-u+u^3$ and a variational characterization of other solutions,, Arch. Rational Mech. Anal., 46 (1972), 81.  doi: 10.1007/BF00250684.  Google Scholar

[20]

M. M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half space, preprint,, , ().   Google Scholar

[21]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, Advances in Math., 229 (2012), 2835.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[22]

D. G. Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations,, J. Math. Pures et Appl., 61 (1982), 41.   Google Scholar

[23]

R. L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, preprint,, , ().   Google Scholar

[24]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[25]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, in Math. Anal. and Applications, (1981), 369.   Google Scholar

[26]

S. Jarohs and Tobias Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, preprint,, , ().   Google Scholar

[27]

H. G. Kaper and M. K. Kwong, Uniqueness of non-negative solutions of a class of semilinear elliptic equations,, Nonlinear Diffusion Equations and Their Equilibrium States II, 13 (1988), 1.   Google Scholar

[28]

C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains,, Commun. in Partial Differential Equations, 16 (1991), 491.  doi: 10.1080/03605309108820766.  Google Scholar

[29]

C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains,, Commun. in Partial Differential Equations, 16 (1991), 585.  doi: 10.1080/03605309108820770.  Google Scholar

[30]

C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations,, Commun. Pure Appl. Anal., 8 (2009), 1925.  doi: 10.3934/cpaa.2009.8.1925.  Google Scholar

[31]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Archive for Rational Mechanics and Analysis, 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[32]

K. Mcleod and J. Serrin, Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $\mathbbR^n$,, Arch. Rational Mech. Anal., 99 (1987), 115.  doi: 10.1007/BF00275874.  Google Scholar

[33]

L. A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in $\mathbbR^n$,, Arch. Rational Mech. Anal., 81 (1983), 181.  doi: 10.1007/BF00250651.  Google Scholar

[34]

L. Zhang and T. Cheng, Liouville theorems involving the fractional Laplacian on the upper half Euclidean space,, submitted to Acta Applicandae Mathematicae., ().   Google Scholar

[35]

R. Zhuo, W. Chen, X. Cui and Z. Yuan, A Liouville theorem for the fractional Laplacian,, Disc. Cont. Dyn. Sys., 36 (2016).   Google Scholar

[36]

S. Zhu, X. Chen and J. Yang, Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system,, Commun. Pure Appl. Anal., 12 (2013), 2685.  doi: 10.3934/cpaa.2013.12.2685.  Google Scholar

[37]

L. Zhang, C. Li, W. Chen and T. Cheng, A Liouville theorem for $\alpha$-harmonic functions in $\mathbbR^n_+$,, Disc. Cont. Dyn. Sys., 36 (2016).   Google Scholar

[38]

R. Zhuo, F. Li and B. Lv, Liouville type theorems for Schrödinger system with Navier boundary conditions in a half space,, Commun. Pure Appl. Anal., 13 (2014), 977.  doi: 10.3934/cpaa.2014.13.977.  Google Scholar

show all references

References:
[1]

F. V. Atkinson and L. A. Peletier, Elliptic equations with nearly critical growth,, J. Diff. Equ., 70 (1987), 349.  doi: 10.1016/0022-0396(87)90156-2.  Google Scholar

[2]

H. Berestycki, L. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a halfspace,, in Boundary Value Problems for Partial Differential Equations and Applications (eds. volume dedicated to E. Magenes, (1993), 27.   Google Scholar

[3]

H. Berestycki, L. Caffarelli and L. Nirenberg, Inequalities for second order elliptic equations with applications to unbounded domains I,, Duke Math. J., 81 (1996), 467.  doi: 10.1215/S0012-7094-96-08117-X.  Google Scholar

[4]

H. Berestycki, L. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains,, Comm. Pure Appl. Math., 50 (1997), 1089.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.  Google Scholar

[5]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil Mat. (N.S.), 22 (1991), 1.  doi: 10.1007/BF01244896.  Google Scholar

[6]

H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations,, J. Geom. and Physics, 5 (1988), 237.  doi: 10.1016/0393-0440(88)90006-X.  Google Scholar

[7]

C. Brandle, E. Colorado, A. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian,, Proc. Royal Soc. Edinburgh, 143 (2013), 39.  doi: 10.1017/S0308210511000175.  Google Scholar

[8]

H. Brezis and L. A. Peletier, Asymptotics for elliptic equations involving critical growth,, in Partial Differential Equations and the Calculus of Variations (Progr. Nonlinear Differential Equations Appl., (1989), 149.   Google Scholar

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[10]

L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems,, Discrete Contin. Dyn. Sys., 33 (2013), 3937.  doi: 10.3934/dcds.2013.33.3937.  Google Scholar

[11]

W. Chen, Y. Fang and C. Li, Super poly-harmonic property of solutions for Navier boundary problems on a half space,, J. Funct. Anal., 256 (2013), 1522.  doi: 10.1016/j.jfa.2013.06.010.  Google Scholar

[12]

W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space,, Advances in Math., 274 (2015), 167.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[13]

W. Chen and C. Li, Regularity of solutions for a system of integral equation,, Comm. Pure Appl. Anal., 4 (2005), 1.   Google Scholar

[14]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Disc. Cont. Dyn. Sys., 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[15]

W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, preprint,, , ().   Google Scholar

[16]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[17]

D. Chen and L. Ma, A Liouville type theorem for an integral system,, Comm. Pure Appl. Anal., 5 (2006), 855.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[18]

W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems,, J. Math. Anal. Appl., 377 (2011), 744.  doi: 10.1016/j.jmaa.2010.11.035.  Google Scholar

[19]

C. V. Coffman, Uniqueness of the ground state solution for $\Delta u-u+u^3$ and a variational characterization of other solutions,, Arch. Rational Mech. Anal., 46 (1972), 81.  doi: 10.1007/BF00250684.  Google Scholar

[20]

M. M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half space, preprint,, , ().   Google Scholar

[21]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, Advances in Math., 229 (2012), 2835.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[22]

D. G. Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations,, J. Math. Pures et Appl., 61 (1982), 41.   Google Scholar

[23]

R. L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, preprint,, , ().   Google Scholar

[24]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[25]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, in Math. Anal. and Applications, (1981), 369.   Google Scholar

[26]

S. Jarohs and Tobias Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, preprint,, , ().   Google Scholar

[27]

H. G. Kaper and M. K. Kwong, Uniqueness of non-negative solutions of a class of semilinear elliptic equations,, Nonlinear Diffusion Equations and Their Equilibrium States II, 13 (1988), 1.   Google Scholar

[28]

C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains,, Commun. in Partial Differential Equations, 16 (1991), 491.  doi: 10.1080/03605309108820766.  Google Scholar

[29]

C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains,, Commun. in Partial Differential Equations, 16 (1991), 585.  doi: 10.1080/03605309108820770.  Google Scholar

[30]

C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations,, Commun. Pure Appl. Anal., 8 (2009), 1925.  doi: 10.3934/cpaa.2009.8.1925.  Google Scholar

[31]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Archive for Rational Mechanics and Analysis, 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[32]

K. Mcleod and J. Serrin, Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $\mathbbR^n$,, Arch. Rational Mech. Anal., 99 (1987), 115.  doi: 10.1007/BF00275874.  Google Scholar

[33]

L. A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in $\mathbbR^n$,, Arch. Rational Mech. Anal., 81 (1983), 181.  doi: 10.1007/BF00250651.  Google Scholar

[34]

L. Zhang and T. Cheng, Liouville theorems involving the fractional Laplacian on the upper half Euclidean space,, submitted to Acta Applicandae Mathematicae., ().   Google Scholar

[35]

R. Zhuo, W. Chen, X. Cui and Z. Yuan, A Liouville theorem for the fractional Laplacian,, Disc. Cont. Dyn. Sys., 36 (2016).   Google Scholar

[36]

S. Zhu, X. Chen and J. Yang, Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system,, Commun. Pure Appl. Anal., 12 (2013), 2685.  doi: 10.3934/cpaa.2013.12.2685.  Google Scholar

[37]

L. Zhang, C. Li, W. Chen and T. Cheng, A Liouville theorem for $\alpha$-harmonic functions in $\mathbbR^n_+$,, Disc. Cont. Dyn. Sys., 36 (2016).   Google Scholar

[38]

R. Zhuo, F. Li and B. Lv, Liouville type theorems for Schrödinger system with Navier boundary conditions in a half space,, Commun. Pure Appl. Anal., 13 (2014), 977.  doi: 10.3934/cpaa.2014.13.977.  Google Scholar

[1]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[2]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[5]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[6]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[7]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[8]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[9]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[11]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[12]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[13]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[16]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[17]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A socp relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[18]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[19]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[20]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]