November  2015, 14(6): 2393-2409. doi: 10.3934/cpaa.2015.14.2393

Symmetry of solutions to semilinear equations involving the fractional laplacian

1. 

School of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007

Received  February 2015 Revised  July 2015 Published  September 2015

Let $0<\alpha<2$ be any real number. Let $\Omega\subset\mathbb{R}^n$ be a bounded or an unbounded domain which is convex and symmetric in $x_1$ direction. We investigate the following Dirichlet problem involving the fractional Laplacian: \begin{equation} \left\{\begin{array}{ll} (-\Delta)^{\alpha/2} u(x)=f(x,u), & \qquad x\in\Omega,                                              (1)\\ u(x)\equiv0, & \qquad x\notin\Omega. \end{array}\right. \end{equation}
    Applying a direct method of moving planes for the fractional Laplacian, with the help of several maximum principles for anti-symmetric functions, we prove the monotonicity and symmetry of positive solutions in $x_1$ direction as well as nonexistence of positive solutions under various conditions on $f$ and on the solutions $u$. We also extend the results to some more complicated cases.
Citation: Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393
References:
[1]

F. V. Atkinson and L. A. Peletier, Elliptic equations with nearly critical growth,, J. Diff. Equ., 70 (1987), 349. doi: 10.1016/0022-0396(87)90156-2. Google Scholar

[2]

H. Berestycki, L. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a halfspace,, in Boundary Value Problems for Partial Differential Equations and Applications (eds. volume dedicated to E. Magenes, (1993), 27. Google Scholar

[3]

H. Berestycki, L. Caffarelli and L. Nirenberg, Inequalities for second order elliptic equations with applications to unbounded domains I,, Duke Math. J., 81 (1996), 467. doi: 10.1215/S0012-7094-96-08117-X. Google Scholar

[4]

H. Berestycki, L. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains,, Comm. Pure Appl. Math., 50 (1997), 1089. doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6. Google Scholar

[5]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil Mat. (N.S.), 22 (1991), 1. doi: 10.1007/BF01244896. Google Scholar

[6]

H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations,, J. Geom. and Physics, 5 (1988), 237. doi: 10.1016/0393-0440(88)90006-X. Google Scholar

[7]

C. Brandle, E. Colorado, A. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian,, Proc. Royal Soc. Edinburgh, 143 (2013), 39. doi: 10.1017/S0308210511000175. Google Scholar

[8]

H. Brezis and L. A. Peletier, Asymptotics for elliptic equations involving critical growth,, in Partial Differential Equations and the Calculus of Variations (Progr. Nonlinear Differential Equations Appl., (1989), 149. Google Scholar

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar

[10]

L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems,, Discrete Contin. Dyn. Sys., 33 (2013), 3937. doi: 10.3934/dcds.2013.33.3937. Google Scholar

[11]

W. Chen, Y. Fang and C. Li, Super poly-harmonic property of solutions for Navier boundary problems on a half space,, J. Funct. Anal., 256 (2013), 1522. doi: 10.1016/j.jfa.2013.06.010. Google Scholar

[12]

W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space,, Advances in Math., 274 (2015), 167. doi: 10.1016/j.aim.2014.12.013. Google Scholar

[13]

W. Chen and C. Li, Regularity of solutions for a system of integral equation,, Comm. Pure Appl. Anal., 4 (2005), 1. Google Scholar

[14]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Disc. Cont. Dyn. Sys., 30 (2011), 1083. doi: 10.3934/dcds.2011.30.1083. Google Scholar

[15]

W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, preprint,, , (). Google Scholar

[16]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar

[17]

D. Chen and L. Ma, A Liouville type theorem for an integral system,, Comm. Pure Appl. Anal., 5 (2006), 855. doi: 10.3934/cpaa.2006.5.855. Google Scholar

[18]

W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems,, J. Math. Anal. Appl., 377 (2011), 744. doi: 10.1016/j.jmaa.2010.11.035. Google Scholar

[19]

C. V. Coffman, Uniqueness of the ground state solution for $\Delta u-u+u^3$ and a variational characterization of other solutions,, Arch. Rational Mech. Anal., 46 (1972), 81. doi: 10.1007/BF00250684. Google Scholar

[20]

M. M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half space, preprint,, , (). Google Scholar

[21]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, Advances in Math., 229 (2012), 2835. doi: 10.1016/j.aim.2012.01.018. Google Scholar

[22]

D. G. Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations,, J. Math. Pures et Appl., 61 (1982), 41. Google Scholar

[23]

R. L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, preprint,, , (). Google Scholar

[24]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125. Google Scholar

[25]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, in Math. Anal. and Applications, (1981), 369. Google Scholar

[26]

S. Jarohs and Tobias Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, preprint,, , (). Google Scholar

[27]

H. G. Kaper and M. K. Kwong, Uniqueness of non-negative solutions of a class of semilinear elliptic equations,, Nonlinear Diffusion Equations and Their Equilibrium States II, 13 (1988), 1. Google Scholar

[28]

C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains,, Commun. in Partial Differential Equations, 16 (1991), 491. doi: 10.1080/03605309108820766. Google Scholar

[29]

C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains,, Commun. in Partial Differential Equations, 16 (1991), 585. doi: 10.1080/03605309108820770. Google Scholar

[30]

C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations,, Commun. Pure Appl. Anal., 8 (2009), 1925. doi: 10.3934/cpaa.2009.8.1925. Google Scholar

[31]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Archive for Rational Mechanics and Analysis, 105 (1989), 243. doi: 10.1007/BF00251502. Google Scholar

[32]

K. Mcleod and J. Serrin, Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $\mathbbR^n$,, Arch. Rational Mech. Anal., 99 (1987), 115. doi: 10.1007/BF00275874. Google Scholar

[33]

L. A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in $\mathbbR^n$,, Arch. Rational Mech. Anal., 81 (1983), 181. doi: 10.1007/BF00250651. Google Scholar

[34]

L. Zhang and T. Cheng, Liouville theorems involving the fractional Laplacian on the upper half Euclidean space,, submitted to Acta Applicandae Mathematicae., (). Google Scholar

[35]

R. Zhuo, W. Chen, X. Cui and Z. Yuan, A Liouville theorem for the fractional Laplacian,, Disc. Cont. Dyn. Sys., 36 (2016). Google Scholar

[36]

S. Zhu, X. Chen and J. Yang, Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system,, Commun. Pure Appl. Anal., 12 (2013), 2685. doi: 10.3934/cpaa.2013.12.2685. Google Scholar

[37]

L. Zhang, C. Li, W. Chen and T. Cheng, A Liouville theorem for $\alpha$-harmonic functions in $\mathbbR^n_+$,, Disc. Cont. Dyn. Sys., 36 (2016). Google Scholar

[38]

R. Zhuo, F. Li and B. Lv, Liouville type theorems for Schrödinger system with Navier boundary conditions in a half space,, Commun. Pure Appl. Anal., 13 (2014), 977. doi: 10.3934/cpaa.2014.13.977. Google Scholar

show all references

References:
[1]

F. V. Atkinson and L. A. Peletier, Elliptic equations with nearly critical growth,, J. Diff. Equ., 70 (1987), 349. doi: 10.1016/0022-0396(87)90156-2. Google Scholar

[2]

H. Berestycki, L. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a halfspace,, in Boundary Value Problems for Partial Differential Equations and Applications (eds. volume dedicated to E. Magenes, (1993), 27. Google Scholar

[3]

H. Berestycki, L. Caffarelli and L. Nirenberg, Inequalities for second order elliptic equations with applications to unbounded domains I,, Duke Math. J., 81 (1996), 467. doi: 10.1215/S0012-7094-96-08117-X. Google Scholar

[4]

H. Berestycki, L. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains,, Comm. Pure Appl. Math., 50 (1997), 1089. doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6. Google Scholar

[5]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil Mat. (N.S.), 22 (1991), 1. doi: 10.1007/BF01244896. Google Scholar

[6]

H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations,, J. Geom. and Physics, 5 (1988), 237. doi: 10.1016/0393-0440(88)90006-X. Google Scholar

[7]

C. Brandle, E. Colorado, A. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian,, Proc. Royal Soc. Edinburgh, 143 (2013), 39. doi: 10.1017/S0308210511000175. Google Scholar

[8]

H. Brezis and L. A. Peletier, Asymptotics for elliptic equations involving critical growth,, in Partial Differential Equations and the Calculus of Variations (Progr. Nonlinear Differential Equations Appl., (1989), 149. Google Scholar

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar

[10]

L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems,, Discrete Contin. Dyn. Sys., 33 (2013), 3937. doi: 10.3934/dcds.2013.33.3937. Google Scholar

[11]

W. Chen, Y. Fang and C. Li, Super poly-harmonic property of solutions for Navier boundary problems on a half space,, J. Funct. Anal., 256 (2013), 1522. doi: 10.1016/j.jfa.2013.06.010. Google Scholar

[12]

W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space,, Advances in Math., 274 (2015), 167. doi: 10.1016/j.aim.2014.12.013. Google Scholar

[13]

W. Chen and C. Li, Regularity of solutions for a system of integral equation,, Comm. Pure Appl. Anal., 4 (2005), 1. Google Scholar

[14]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Disc. Cont. Dyn. Sys., 30 (2011), 1083. doi: 10.3934/dcds.2011.30.1083. Google Scholar

[15]

W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, preprint,, , (). Google Scholar

[16]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar

[17]

D. Chen and L. Ma, A Liouville type theorem for an integral system,, Comm. Pure Appl. Anal., 5 (2006), 855. doi: 10.3934/cpaa.2006.5.855. Google Scholar

[18]

W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems,, J. Math. Anal. Appl., 377 (2011), 744. doi: 10.1016/j.jmaa.2010.11.035. Google Scholar

[19]

C. V. Coffman, Uniqueness of the ground state solution for $\Delta u-u+u^3$ and a variational characterization of other solutions,, Arch. Rational Mech. Anal., 46 (1972), 81. doi: 10.1007/BF00250684. Google Scholar

[20]

M. M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half space, preprint,, , (). Google Scholar

[21]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, Advances in Math., 229 (2012), 2835. doi: 10.1016/j.aim.2012.01.018. Google Scholar

[22]

D. G. Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations,, J. Math. Pures et Appl., 61 (1982), 41. Google Scholar

[23]

R. L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, preprint,, , (). Google Scholar

[24]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125. Google Scholar

[25]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, in Math. Anal. and Applications, (1981), 369. Google Scholar

[26]

S. Jarohs and Tobias Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, preprint,, , (). Google Scholar

[27]

H. G. Kaper and M. K. Kwong, Uniqueness of non-negative solutions of a class of semilinear elliptic equations,, Nonlinear Diffusion Equations and Their Equilibrium States II, 13 (1988), 1. Google Scholar

[28]

C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains,, Commun. in Partial Differential Equations, 16 (1991), 491. doi: 10.1080/03605309108820766. Google Scholar

[29]

C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains,, Commun. in Partial Differential Equations, 16 (1991), 585. doi: 10.1080/03605309108820770. Google Scholar

[30]

C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations,, Commun. Pure Appl. Anal., 8 (2009), 1925. doi: 10.3934/cpaa.2009.8.1925. Google Scholar

[31]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Archive for Rational Mechanics and Analysis, 105 (1989), 243. doi: 10.1007/BF00251502. Google Scholar

[32]

K. Mcleod and J. Serrin, Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $\mathbbR^n$,, Arch. Rational Mech. Anal., 99 (1987), 115. doi: 10.1007/BF00275874. Google Scholar

[33]

L. A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in $\mathbbR^n$,, Arch. Rational Mech. Anal., 81 (1983), 181. doi: 10.1007/BF00250651. Google Scholar

[34]

L. Zhang and T. Cheng, Liouville theorems involving the fractional Laplacian on the upper half Euclidean space,, submitted to Acta Applicandae Mathematicae., (). Google Scholar

[35]

R. Zhuo, W. Chen, X. Cui and Z. Yuan, A Liouville theorem for the fractional Laplacian,, Disc. Cont. Dyn. Sys., 36 (2016). Google Scholar

[36]

S. Zhu, X. Chen and J. Yang, Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system,, Commun. Pure Appl. Anal., 12 (2013), 2685. doi: 10.3934/cpaa.2013.12.2685. Google Scholar

[37]

L. Zhang, C. Li, W. Chen and T. Cheng, A Liouville theorem for $\alpha$-harmonic functions in $\mathbbR^n_+$,, Disc. Cont. Dyn. Sys., 36 (2016). Google Scholar

[38]

R. Zhuo, F. Li and B. Lv, Liouville type theorems for Schrödinger system with Navier boundary conditions in a half space,, Commun. Pure Appl. Anal., 13 (2014), 977. doi: 10.3934/cpaa.2014.13.977. Google Scholar

[1]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[2]

Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051

[3]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[4]

Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235

[5]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[6]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[7]

Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201

[8]

Pei Ma, Yan Li, Jihui Zhang. Symmetry and nonexistence of positive solutions for fractional systems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1053-1070. doi: 10.3934/cpaa.2018051

[9]

E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209

[10]

Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control & Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022

[11]

Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071

[12]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[13]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[14]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[15]

Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416

[16]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[17]

Jérôme Coville, Nicolas Dirr, Stephan Luckhaus. Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients. Networks & Heterogeneous Media, 2010, 5 (4) : 745-763. doi: 10.3934/nhm.2010.5.745

[18]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[19]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[20]

Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]